



City of Cedar Hill  
285 Uptown Boulevard  
Cedar Hill, Texas 75104  
972-291-5100  
fax 972-291-5250

### **NOTICE OF MEETING**

Board of Adjustments and Appeals

Tuesday, November 7, 2017

285 Uptown Blvd

**Administrative Conference Room- 4<sup>th</sup> floor**

1:00 p.m.

### **AGENDA**

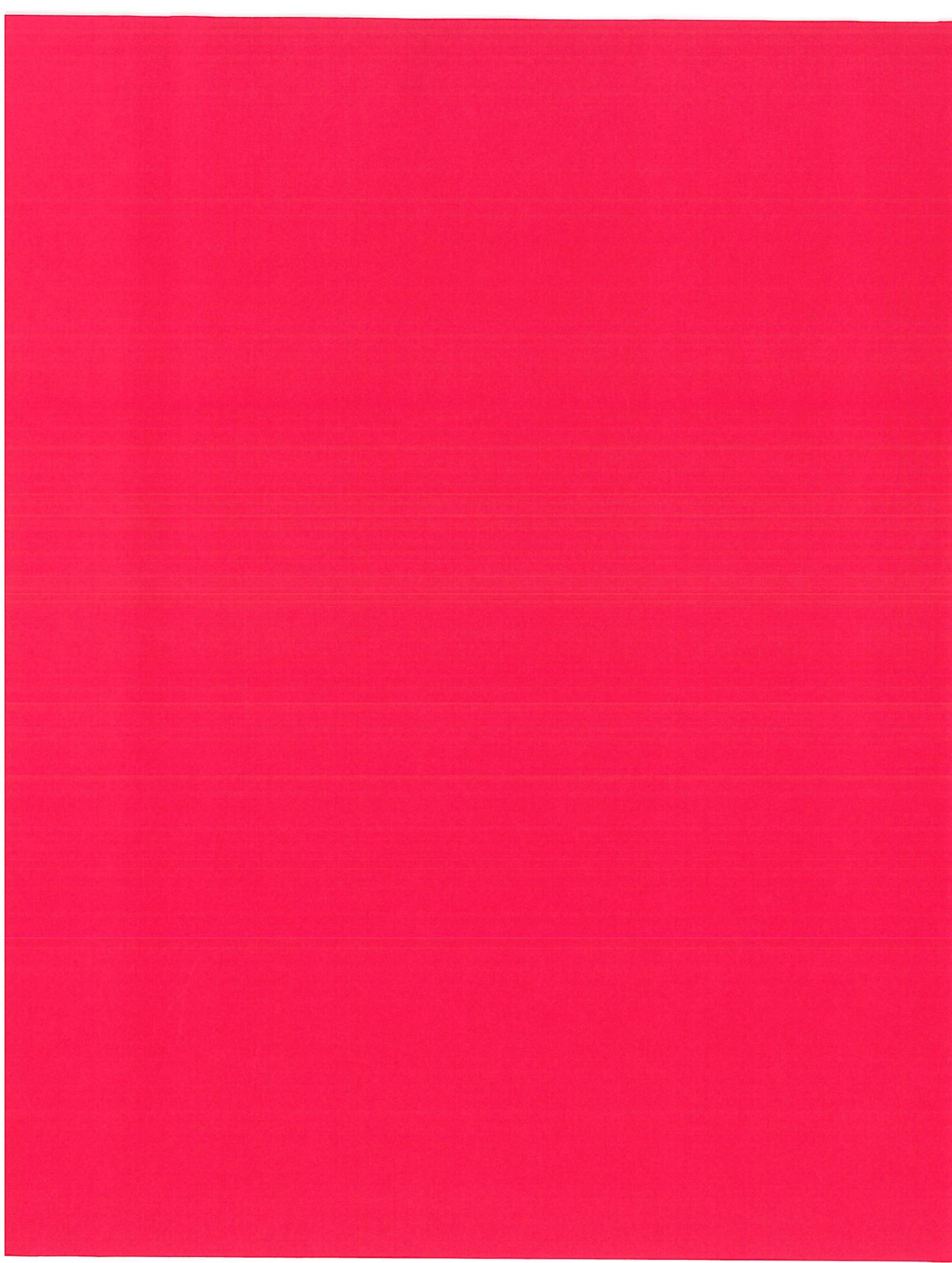
- I. Call meeting to order.
- II. Approve the minutes for the Tuesday, October 10, 2017 meeting.
- III. Review and consider a request by Abdellatif Mahmoud and Amal Family Trust for an exception to the Cedar Hill Zoning Ordinance #2001-64, Section 5.4.2.6 to allow the construction of eight (8) foot tall fence in the required front yard at Lots 6 and 7, Block C, Pleasant Run Farms more commonly known as 978 N. Hwy 67.
- IV. Review and consider two requests by Joe Property and Construction for an exception to the Cedar Hill Zoning Ordinance #2001-64, Section 3.3.3.A. Minimum Lot Area to allow a lot area of 0.702 acres and Section 3.3.3.B. Minimum Side Yard (interior) to allow a side yard of 10 feet at Tract 2.6 Abstract 942, John N Gainer more commonly known as 363 Lakeview Drive.
- V. Review and consider a request by Tanya Ragan for an exception to the Cedar Hill Zoning Ordinance #2001-64, Section 3.18.3.B and the platted building line of 35 feet to allow a building line of 15.3 feet on the Hall Street frontage of Lot 5, Block A, B & J Industrial Installment #2, more commonly known as 601 Jealouse Way.

This facility is wheelchair accessible. Handicapped parking spaces are available. Requests for sign interpretive services must be made 48 hours ahead of meeting. To make arrangements, call 972-291-5100 ext 1018 or (TDD) 1-800-RELAY TX (1-800-735-2989).

**PURSUANT TO SECTION 30.07, PENAL CODE (TRESPASS BY LICENSE HOLDER WITH AN OPENLY CARRIED HANDGUN), A PERSON LICENSED UNDER SUBCHAPTER H, CHAPTER 411, GOVERNMENT CODE (HANDGUN LICENSING LAW), MAY NOT ENTER THIS PROPERTY WITH A HANDGUN THAT IS CARRIED OPENLY**

**CONFORME A LA SECCIÓN 30.07, DEL CÓDIGO PENAL (ENTRADA SIN AUTORIZACIÓN POR TITULAR DE LICENCIA CON UNA PISTOLA VISIBLE), UNA PERSONA CON LICENCIA BAJO EL SUBCAPÍTULO H, CAPÍTULO 411 DEL CÓDIGO DE GOBIERNO (LEY DE LICENCIAS DE PISTOLAS), NO PUEDE ENTRAR EN ESTA PROPIEDAD CON UNA PISTOLA VISIBLE**

VI. Adjourn.


I certify that copies of the above notice of meeting were posted at Cedar Hill Government Center, 285 Uptown Boulevard, Cedar Hill, Texas, on the 1<sup>st</sup> day of November 2017.

Jeanette Cosme  
Jeanette Cosme – Permit Tech/Secretary

This facility is wheelchair accessible. Handicapped parking spaces are available. Requests for sign interpretive services must be made 48 hours ahead of meeting. To make arrangements, call 972-291-5100 ext 1018 or (TDD) 1-800-RELAY TX (1-800-735-2989).

**PURSUANT TO SECTION 30.07, PENAL CODE (TRESPASS BY LICENSE HOLDER WITH AN OPENLY CARRIED HANDGUN), A PERSON LICENSED UNDER SUBCHAPTER H, CHAPTER 411, GOVERNMENT CODE (HANDGUN LICENSING LAW), MAY NOT ENTER THIS PROPERTY WITH A HANDGUN THAT IS CARRIED OPENLY**

**CONFORME A LA SECCIÓN 30.07, DEL CÓDIGO PENAL (ENTRADA SIN AUTORIZACIÓN POR TITULAR DE LICENCIA CON UNA PISTOLA VISIBLE), UNA PERSONA CON LICENCIA BAJO EL SUBCAPÍTULO H, CAPÍTULO 411 DEL CÓDIGO DE GOBIERNO (LEY DE LICENCIAS DE PISTOLAS), NO PUEDE ENTRAR EN ESTA PROPIEDAD CON UNA PISTOLA VISIBLE**



**Minutes  
Board of Adjustments and Appeals  
Meeting of Tuesday, October 10, 2017**

The Board of Adjustments of the City of Cedar Hill, Texas met on Tuesday, October 10, 2017 at 1PM in the Cannady Room- Executive Briefing Room on the 1<sup>st</sup> floor of the Government Center, City of Cedar Hill, Texas.

Present: Ray Stroh, Douglass Hibbs, Roger Welch, Michael Craig and Jerry Berry  
Staff Present: Johnny Kendro, Building Official; Jeanette Cosme, Permit Tech

**I. Call the meeting to order.**

Michael Craig calls meeting to order and explains to the people who are present that they must have for votes in favor of their request in order for it to pass.

**II. Approve meeting minutes of meeting for October 10, 2017**

**Doug Hibbs** makes a motion to approve the minutes from August 22, 2017 and Ray Stroh seconded the motion.

Michael Craig takes a vote to approve the minutes and all members voted in favor of the minutes being approved.

**III. Review and consider a request by Ole Nygaard for an exception to the Cedar Hill Zoning Ordinance #2001-64, Section 4.1.3.E.2 to allow the use of Hardie Board siding on an accessory building at Tract 142, Abstract 539, James Hughes survey more commonly known as 966 Mobley Road.**

Ole Nygaard is present to speak on his request for the variance. There is no one present to speak in opposition. Mr. Nygaard is requesting to match the other storage buildings in the neighborhood. Currently there are not any storage buildings that are all masonry in the neighborhood. He wants to have some brick and siding, which will match his house along with the others in the neighborhood. His home is not 100% brick and that is the reason he is requesting this variance. He has provided pictures of other homes and storage buildings in his area to show that they are not 100% masonry. He has also provided signatures from six neighbors that are in

support of his request. Roger Welch asked Johnny Kendro about the others in the area and Johnny explained that the majority are not brick. Some of those were built prior to the ordinance and others were granted through variance requests.

Doug Hibbs motions to approve the request and Ray Stroh seconds the motion to approve. Michael Craig asks for a vote and all members vote in favor of granting the request.

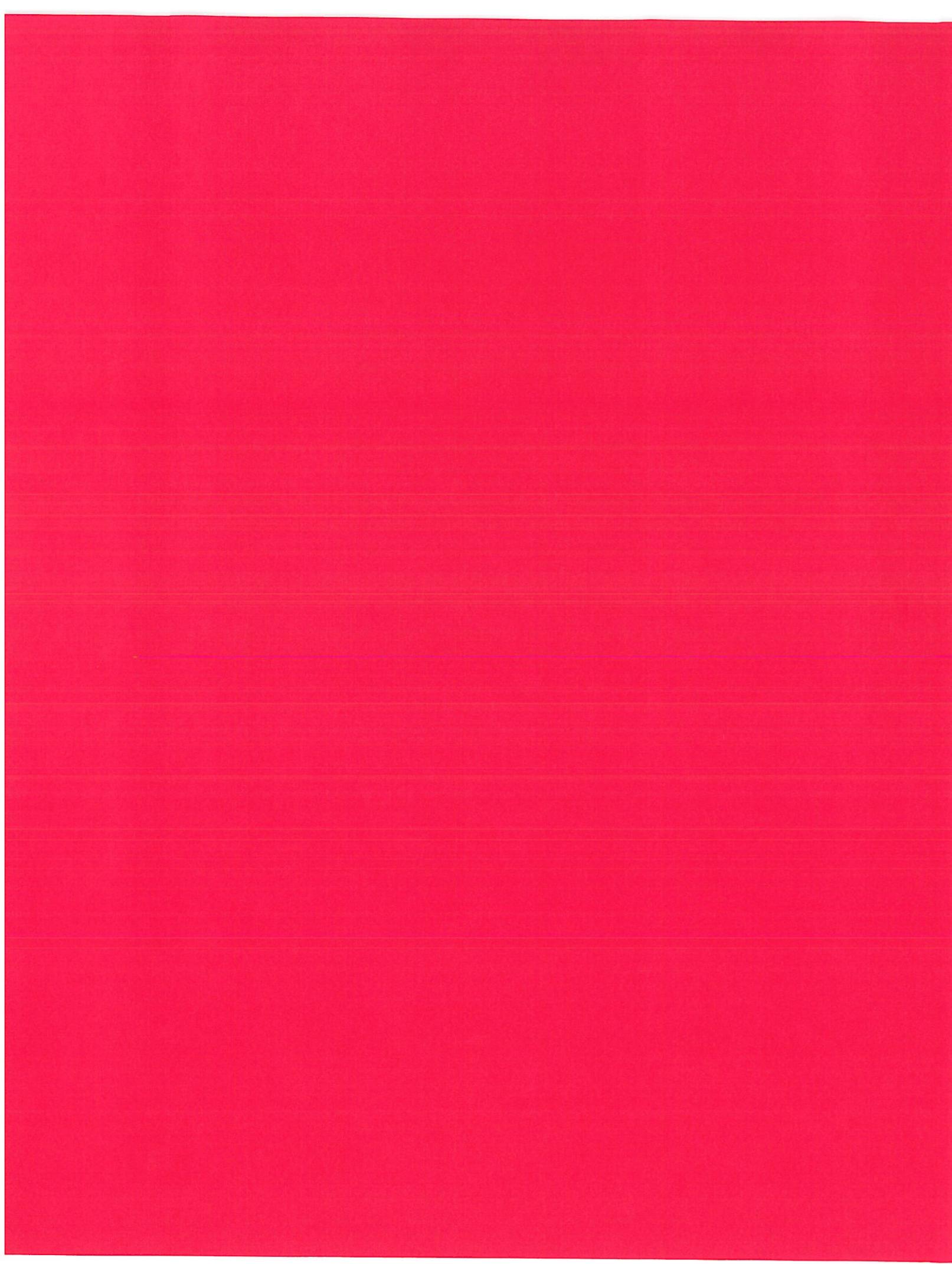
**IV. Review and consider a request by Abdellatif Mahmoud & Amal Family Trust for an exception to the Cedar Hill Zoning Ordinance #2001-64, Section 5.4.2 to allow the construction of a 10 foot tall fence in the required front yard at Lots 6 and 7, Block C, Pleasant Run Farms more commonly known as 978 N Hwy 67.**

Carol Bosingher is present at the meeting. She works for Electric Guard Dog Company located at 550 Assembly St, Columbia SC 29201. There is currently a fence now but it is not in the front. She is explaining the documents in the paper work they submitted. The blue lines show the fence, as they want it, which is 10 feet. The yellow is the current fence, which is six feet. The owners want to add this fence to help deter anyone from stealing property or parts from the cars. A 10-foot fence would make it harder for them to get onto the property, not to mention how hard it would be to get things over that fence.

Michael Craig explains that this is located across from where Best Buy used to be for any of the Board members who may not be familiar with the area.

Mrs. Bosingher explains that the fence will be an energized, pulse fence and that is why it would be located behind the perimeter fence. Roger Welch is concerned that the height of the fence will not be aesthetically appealing. Michael Craig explains that it would move back some and just be adding 4 feet because it is currently 6 feet tall. Roger asked why they want it so high and she said 10 feet is the standard fence height for all locations throughout the United States. Mrs. Bosingher also explains that the fence will not be energized during business hours. They would set it for times that the business is closed. Johnny mentions that the current fence is not in compliance and Michael Craig asks if the height ordinance is for commercial or residential. Johnny explains that the ordinance is for both residential and commercial.

Ray Stroh asks about any hardships that may be the reason they want this variance granted. Mrs. Bosingher explains that people steal tires and rims


from cars that are being worked on. Caliber Collision has a problem with people stealing off the cars on the property. In California, the problem was very big and they were high-end cars.

Michael Craig asks if anyone has any more questions before voting and all members state they are ready to vote. Roger Welch motions to deny the request and Jerry berry and Ray Stroh also vote to deny the request.

Michael explains that he does not have a problem with the request because if his car was there and being worked on, he would want the car protected. Doug Hibbs agrees with Michael and agrees that he also would like to know his car is protected if it is there for some work and even while it sits there a few days before the work begins.

Michael Craig explains different options but they would lose about 16 parking spaces if they did it and it would have a 20-foot setback. The vote was 3 against and 2 for the request. Michael explains they can resubmit once she talked with her customers about possibly moving the fence back.

- V. Mr. Roger Welch motions to adjourn the meeting and Doug Hibbs seconds that motion. All approved the motion. Meeting adjourned.



RECEIVED

OCT 18 2017

CITY OF CEDAR HILL  
Code Enforcement & Building Inspections

10/18/17

JC

CK 31677



**BOARD OF ADJUSTMENT  
APPLICATION FORM**

Owner Abdellatif Mahmoud & Amal Family Trust of

Address 80 Ritz Cove Dr.

Dana Point, CA 92629

Phone Number (817)427-1410

Email address: \_\_\_\_\_

Applicant Nikki Huggins

Address 550 Assembly St. 5th Floor

Columbia, SC 29201

Phone Number (803) 978-5828

Email address: nhuggins@electricguarddog.com

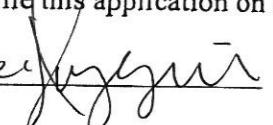
Address of property requesting variance: 978 N. Highway 67 Cedar Hill, TX 75104

Legal Description of Property:

Lot 5, Block C, of Pleasant Run Farms Subdivision

AND/OR

Tract       , Block       ,        Survey


Explain Variance Desired Installation of a 8' 12V/DC, battery operated, low-voltage electric security fence 6-12" inside of existing permitted perimeter fence within the 20' setback and increasing existing permitted 8' security fence to 10' along the side and rear

Zoning Ordinance No. 2002-103, Section 5.4.2, Requirement Per building official, a fence is considered a structure as a is a building. The fence line/building line is at the property line. With that determination, there is no front yard. We should have no problem installing 1' inside/behind existing perimeter fence since it would not be in the front yard.

Give reason for hardship and justify need for variance See attached letter of justification

Attachments required: Survey of property desiring variance, and all supporting documents for variance requested.

I am the owner of the herein described property and Electric Guard Dog, LLC is authorized to file this application on my behalf.

X   
Applicant

X   
Owner

Existing Zoning: Commercial

Filing Date: \_\_\_\_\_

\*\*Submit Application with Plot Plan, supporting documents & Filing Fee)\*\*

Residential Fee: \$125.00

Non-residential Fee: \$250.00

The request for variance from the Cedar Hill zoning Code is to install an 8' security fence within the 20' front yard setback (frontage) and measuring 20' back on both sides of the frontage, and to raise the 8' allowed fence height to 10' along the rear and side of the property.

The determination of fencing within Cedar Hill Coding as relayed by the Building Official is that a fence is considered a structure just like a building. There is no difference in the two. There is an existing permitted perimeter fence which is on the property line along the frontage. With the determination, the front yard would be measured from the property line, to the perimeter fence. The proposed fence is to be installed 6-12" inside of (behind) the existing structure and therefore out of the front yard.

1. Caliber Collision is a Body Shop with highly desirable supplies, inventory and equipment. We believe hardships to be:
  - a. High value of inventory – both the equipment and the metal inventory
  - b. Due to size and nature of items, **must** be stored in outside lot and cannot be protected inside a building

Special circumstance and conditions of the location dictate the height of the electric security fence be permitted at ten feet.

- The perimeter security fence which is standard chain link and strands of barbed wire (**NOT electrified**) is 8'.
- The electric fence should be considerably higher than the perimeter fence.
- The 10' height prevents the perpetrators from simply hurdling both the perimeter, non-electric fence and the Electric Fence as a single barrier in one continuous motion. They would be required to navigate 2 unequal barriers to access the property for purposes of criminal intent.
- At 10', the fence is more imposing to someone thinking about scaling it. We have experimented with different heights and have found shorter fences (8') to be too tempting to breach.

The location of the property and the high value targets secured in the yard are an open invitation to the criminal class. The only system that actually PREVENTS crime and break-ins is the Electric Guard Dog security system

2. Presently the code does not allow for 10' fencing (8' max) or building within the front yard setback (20'). The business is currently using chain link and barbed wire (**NOT electrified**) fencing which is allowed by code. This fencing was permitted in 2015 and included in the 20' setback. It has proved ineffective, resulting in multiple thefts during the past several months. The EGD must be installed 6-12" inside of the existing permitted chain link fence.
3. The variance authorized will not be injurious to adjacent properties or the surrounding neighborhood or otherwise be detrimental to public welfare. It is installed completely inside the existing perimeter, non-electrified fence and therefore not exposed to the public. To come in contact with the EGD, one would have to be trespassing and illegally entering the property.
4. This variance is in harmony with and serves the general intent and purpose of the Cedar Hill Zoning Code because it enhances the community by effectively deterring crime. It is not exposed to the public so there is no danger or nuisance. Much more effective and reliable than security guards, Electric Guard Dog will provide Caliber Collision with an affordable means to protect their assets and

employees, allowing them to invest monies into growth, resulting in continued employment and continued or increased tax base for the county. With the recent crime they require our more effective security system to remain a viable business. This security system requires the fence to be 10' to be most effective.

5. This variance is not being sought to relieve illegal acts or self-imposed hardships. The business is a reputable business, located in the appropriate zoning and complies with all other county ordinances. The variance authorized will be consistent with the general purpose and intent of the provision from which the variance is sought as the general safety and welfare of the public is maintained, crime is prevented, and the City can husband police resources toward crime other than property break-ins and vandalism. The variance is the minimum necessary to relieve a practical difficulty and resulting hardship, cameras record crime and don't prevent it, guards are unreliable (don't show up for work, sleep on the job, and at times are complicit in the criminal action). The EGD is the most reliable, most economical, and safest security application available. In actuality the installation of the EGD will secure the variance property and increase the security of the surrounding properties and the immediate area by deterring the criminal element.



The #1 Theft Deterrent Service in the U.S.

550 Assembly St., 5th Floor  
Columbia, SC 29201  
Phone: (803) 978-5828 | Fax: (803) 404-5378

October 12, 2017

Johnny Kendro  
285 Uptown Blvd. Bldg 100  
Cedar Hill, Tx 75104

RE: Variance Application for 8' security fence within the 20' front yard setback (frontage) and to allow 10' security fencing along the rear and side of the property – 978 N. Hwy 67 – Caliber Collision

Mr. Kendro,

Enclosed is the completed BOA application form, a check in the amount of \$250.00 for the filing fee, and supporting documentation. This includes the revised site plan as suggested, the approved original survey, the site plan finalized in 2015 which shows the perimeter fence within the 20' setback, and the documents that you provided me with. Members of the Board had concerns about our system looking like a prison as well as the safety of the system. With the new submittal, I have included a copy of our safety document as well as photos of previously installed EGD systems and photos of prisons to address both concerns.

In addition, the site currently has 6' chain link with 2' of barbed wire strands on top to make the total fence height 8' along the frontage. To address the concern with aesthetics, we would like to suggest that if allowed, we would remove the 2' of barbed wire from atop the perimeter fence. This would actually improve the aesthetics of the site.

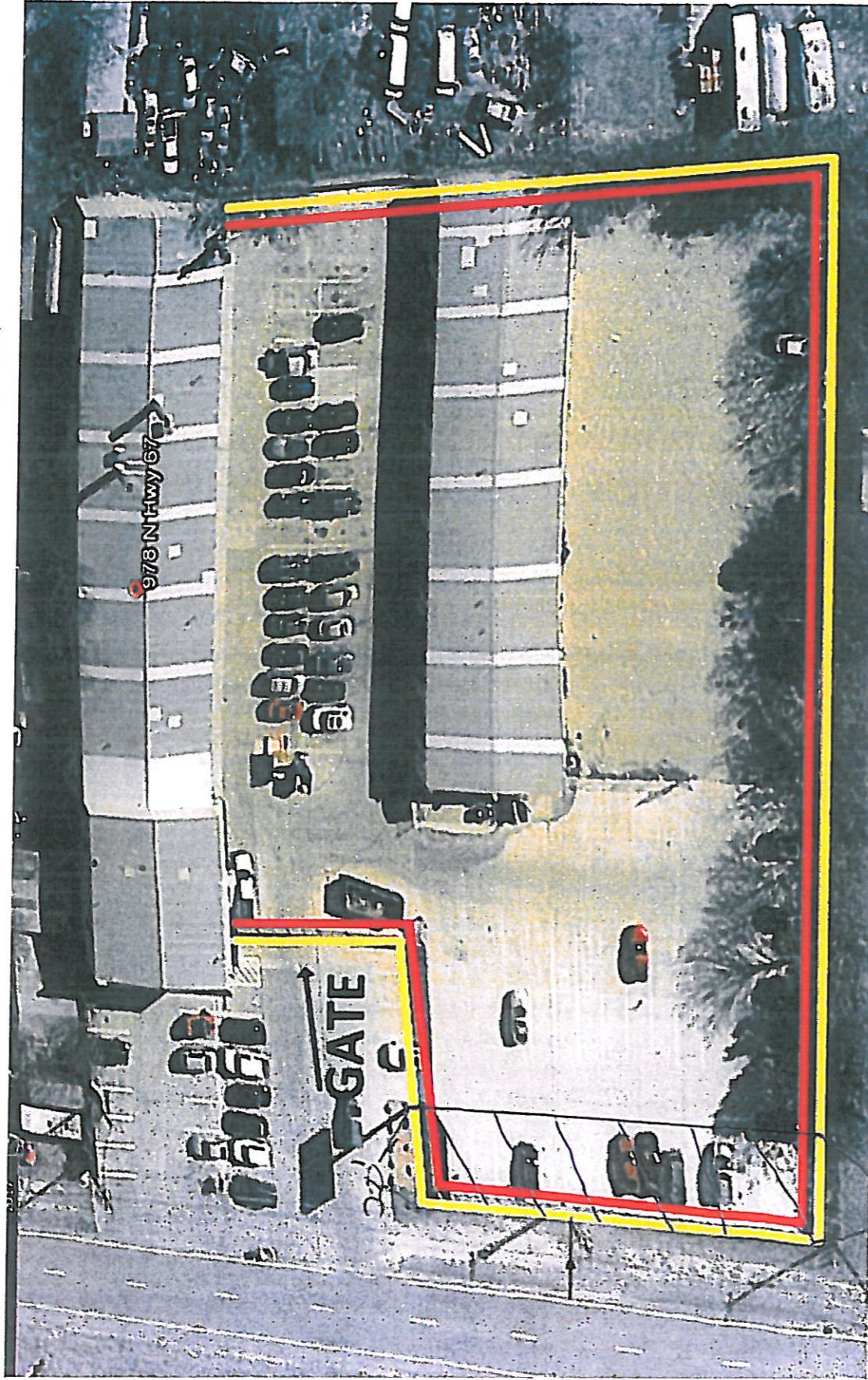
Please confirm receipt of the submittal and let me know if there is anything else needed from me. Also let me know the date of the hearing upon scheduling.

Thank you,

**Nikki Huggins**  
Compliance Manager  
Electric Guard Dog, LLC  
803-978-5828  
[nhuggins@electricguarddog.com](mailto:nhuggins@electricguarddog.com)  
[electricguarddog.com](http://electricguarddog.com)

Follow us:




Original

SITE PLAN  
Caliber Collision  
978 N Hwy 67  
Cedar Hill, TX 75104

PROPOSED SECURITY  
FENCE; 8' HIGH, 12"  
BEHIND EXISTING  
FENCE

PERIMETER FENCE

*(Red line)* Fences are prohibited in this area



Provided by  
Johnny Kendro

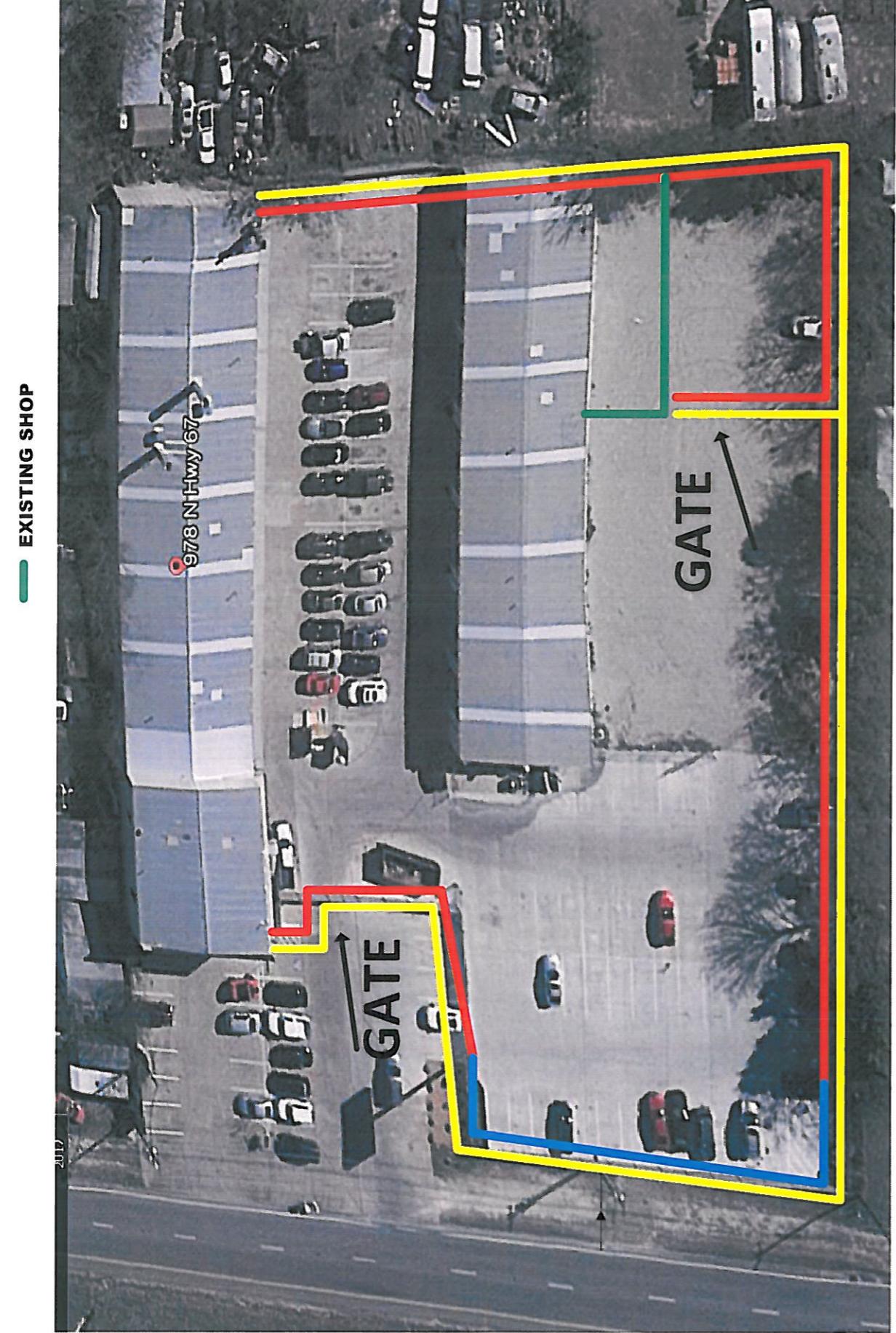
Revised

SITE PLAN  
Caliber Collision  
978 N Hwy 67  
Cedar Hill, TX 75104

PROPOSED ADDITION  
OF 2' TO PERMITTED 8'  
FENCE; 10' HIGH, 12"  
BEHIND EXISTING  
FENCE



PERIMETER FENCE




PROPOSED  
ADDITION TO  
PERMITTED  
SECURITY FENCE;



8'

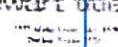
EXISTING SHOP



## SECTION 5.4

## SUPPLEMENTAL REGULATIONS

## 5.4.1 Setbacks and Lot Configuration:



- A. **Measuring Setbacks** - All setback measurements shall be made in accordance with Illustrations 6, 7, and 8.
- B. **Configuration of Lots** - Wherever possible, flag lots (i.e., lots with minimal, or panhandle type, frontage) shall be avoided. Similarly, through (i.e., double frontage) lots (particularly within residential zoning districts) shall also be avoided wherever possible. (Also see Subdivision Ordinance for regulations pertaining to the configuration of lots.)

## 5.4.2 Front Yard:

- A. On all corner lots, the front yard setback shall be observed along the frontage of both intersecting streets, unless approved specifically otherwise on a final plat. Where single-family and townhouse lots have double frontage, extending from one street to another, or are on a corner, a required front yard shall be provided on both streets unless a side or rear yard building line has been established along one frontage on the plat, in which event only one required front yard need be observed. The side and/or rear yards in the case of single-family and townhouse uses shall be identified and the front of the structure shall not face the side or rear yard (see Illustration 9).
- B. Where the frontage on one side of a street between two intersecting streets is divided by two or more zoning districts, the front yard shall comply with the requirements of the most restrictive district for the entire frontage (see Illustration 3).
- C. The front yard shall be measured from the property line to the front face of the building, to the nearest supporting member of a covered porch or terrace, or to any attached accessory building. Eaves and roof extensions or a porch without posts or columns may project into the required front yard for a distance not to exceed four feet (4'), and subsurface structures, platforms or slabs may not project into the front yard to a height greater than thirty inches (30") above the average grade of the yard (see Illustration 4).
- D. Lots fronting on the bubble portion of a cul-de-sac or "eyebrow" of a street shall have a minimum lot width of 70-feet unless a lesser lot width is specified for the zoning district in which the lot is located. Measurement of the width of such lots shall be in a straight line from the points of the intersection of the building line with the side lot line. (See Illustration 6) (Ord No. 02-103 § 1.03-26-02)
- E. Gasoline service station pump islands that parallel a public street may be located a minimum of eighteen feet (18') to the property line adjacent to a public street. For pump islands that are perpendicular or diagonal to a public street, the setback shall be thirty feet (30') in order to prevent vehicles stacking out into the street while waiting for a pump position. Pump islands may extend beyond the front building line as described above (provided that all other requirements of this Ordinance are met), but shall not be closer than fifteen feet (15') to any property line that is not adjacent to a public street.
- F. Where a future right-of-way line has been established for future widening or opening of a street or thoroughfare, upon which a lot abuts, then the front, side, or rear yard shall be measured from the future right-of-way line.

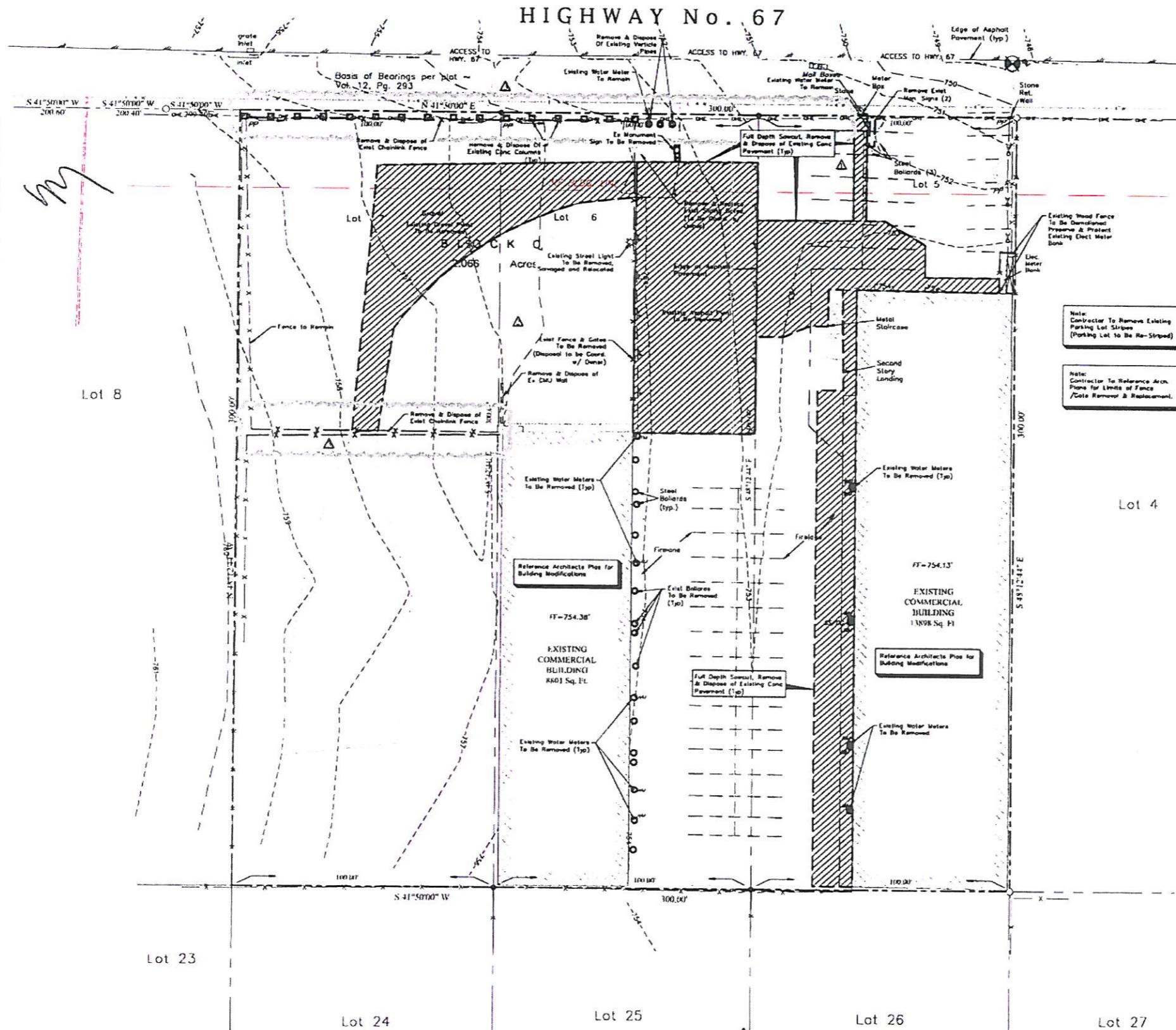
HIGHWAY NO. 67

ALTA/ACSM  
LAND TITLE SURVEY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |                                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                         |  | This is a legend box containing a sketch of the survey area and an example of the survey lines.                         |  |
| 970-978 Highway 87<br>Cedar Hill, Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  | 1987<br><b>stewart title</b> #<br> |  |
| <b>Lots 5, 6, and 7, Block C - Pleasant Run Farms Addition<br/>         City of Cedar Hill, Dallas County, Texas</b>                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                         |  |
| <b>LEGAL DESCRIPTIONS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |                                                                                                                         |  |
| <b>Lots 5, 6 &amp; 7, or Block C, Pleasant Run Farms Addition in the City of Cedar Hill, Dallas County, Texas, as described in the State Plat Book recorded in Volume 10, Page 212, Map 54, Volume 1, Dallas County, Texas.</b>                                                                                                                                                                                                                                                              |  |                                                                                                                         |  |
| <b>STRUCTURES CERTIFICATE</b><br>The property is American Bank of Texas - participating survey lines. The 2011 Texas Flood Insurance Rate Map (FIRMs) and the 2011 Texas Flood Insurance Rate Map (FIRMs) and the 2011 Minimum Residential Building Requirements (LR) of the City of Cedar Hill, Texas, were used and adopted by ALTA and FIRM, and includes areas 12, 2, 3, 4, 5, 6, and 10 of the City of Cedar Hill, Texas, as recorded on June 10, 2014.<br>Date of Plan: Sept. 11, 2014 |  |                                                                                                                         |  |
| <b>FLOOD NOTE:</b> It is the opinion of the surveyor, based on information available, that the property does not exceed the 100-year flood risk as determined by the Federal Emergency Management Agency Flood Insurance Rate Map. Other information, such as soil and water infiltration, date of last May 7, 2014. Some property areas are in Zone "A".                                                                                                                                    |  |                                                                                                                         |  |
| <b>DRAWN BY:</b> JAMES C. DAWSON, STATE OF TEXAS, LICENSED SURVEYOR<br><b>RECORDED BY:</b> JAMES C. DAWSON, AND<br>Record Date: 09/04/2014, Last Surveyor: JAMES C. DAWSON, Last Record: 11/05/2014                                                                                                                                                                                                                                                                                          |  |                                                                                                                         |  |

RECEIVED  
SEP 9 2015  
CITY OF CEDAR HILL

www.english-test.net


## CODE ENFORCEMENT

## CODE ENFORCEMENT

CHINESE CULTURE

SCANNED

MAY 13 2015



CONTRACTOR SHALL COORDINATE WITH FRANCHISE UTILITY COMPANY REGARDING THE RAISING, LOWERING, REMOVAL, OR RELOCATION OF FRANCHISE UTILITIES.

NOTES:

ALL WATER AND SANITARY SEWER TAPS THAT ARE NO LONGER NEEDED SHALL BE ABANDONED.

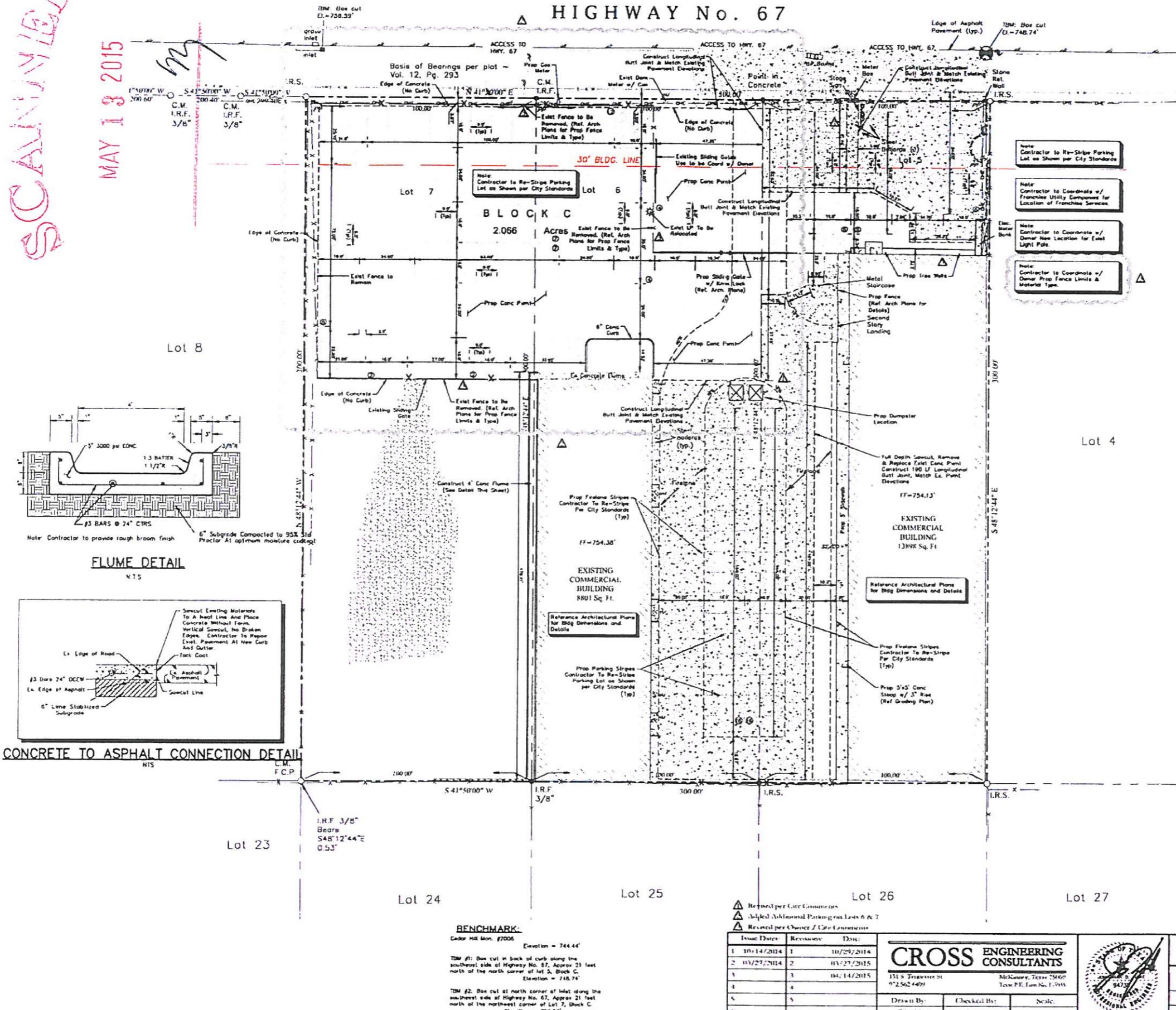
REMOVE AND OR RELOCATE EXISTING SIGNAGE INSIDE DEMOLITION AREA

AREA OF DEMOLITION, REMOVE ALL CONCRETE, GRAVEL, ASPHALT AND /OR CURB & GUTTER

LIMITS OF DEMOLITION

**STOP!**  
**CALL BEFORE YOU DIG**




(at least 72 hours prior to digging)

| Issue Dates    | Revisions | Date       | CROSS ENGINEERING CONSULTANTS                                                            |             |        | DEMOLITION PLAN |  | Sheet No.            |
|----------------|-----------|------------|------------------------------------------------------------------------------------------|-------------|--------|-----------------|--|----------------------|
| 1 10/14/2014   | 1         | 10/29/2014 | 15227 Transcott St<br>McKinney, Texas 75062<br>972.622.4400<br>Texas P.P. Item No. T-363 |             |        | C1<br>of<br>5   |  | Project No.<br>14075 |
| 2 03/27/2015   | 2         | 03/27/2015 |                                                                                          |             |        |                 |  |                      |
| 3 3 04/14/2015 | 3         | 04/14/2015 |                                                                                          |             |        |                 |  |                      |
| 4 4            | 4         |            |                                                                                          |             |        |                 |  |                      |
| 5 5            | 5         |            |                                                                                          |             |        |                 |  |                      |
| 6 6            | 6         |            | Drawn By:                                                                                | Checked By: | Scale: |                 |  |                      |
|                |           |            | C.E.C.I.                                                                                 | C.E.C.I.    | 1"=20' |                 |  |                      |
|                |           |            |                                                                                          |             |        | 04/14/15        |  |                      |

MAY 18 2015

SCANNED BY 10

# HIGHWAY No. 67



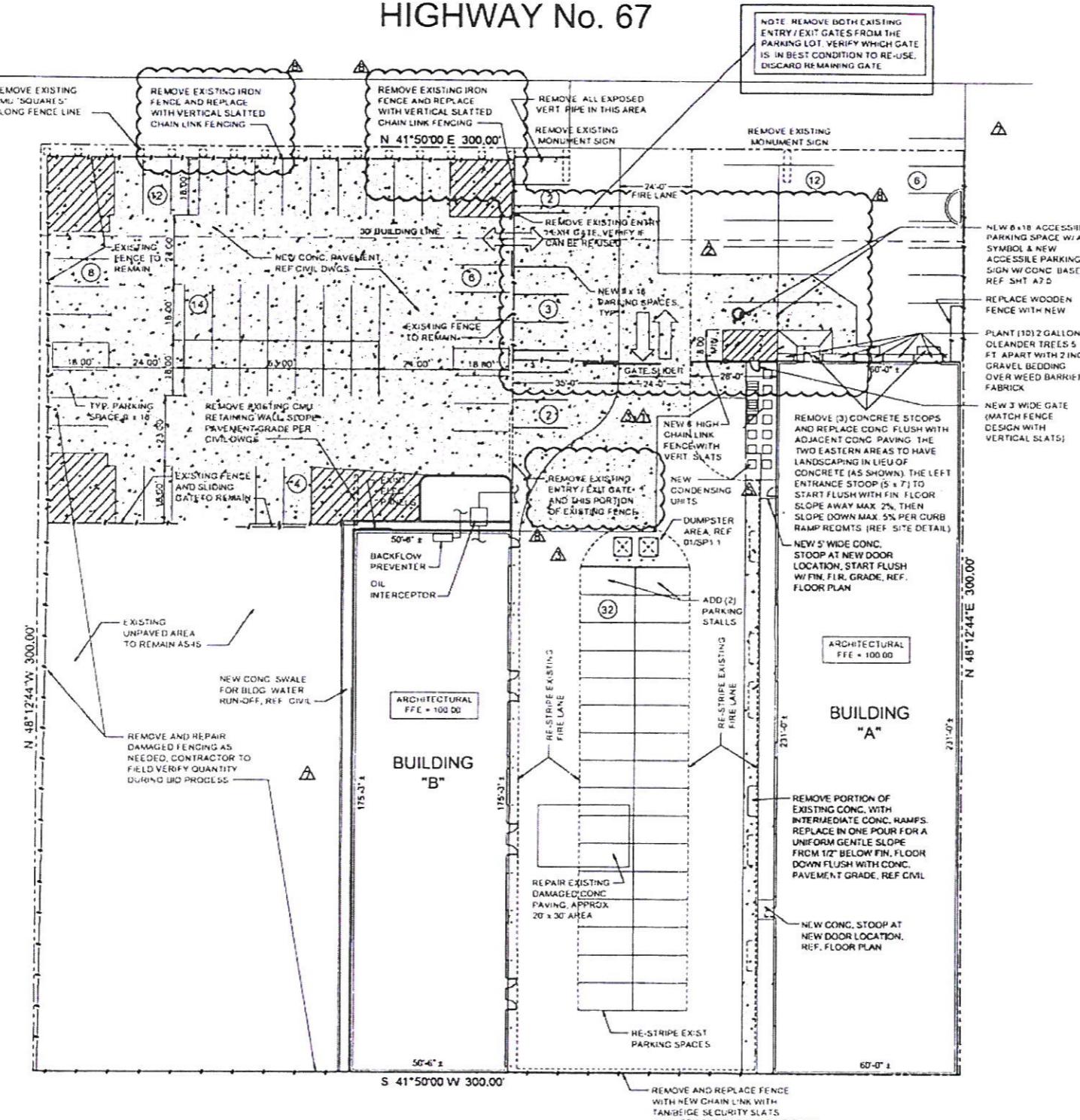
| Issue Date   | Revision | Date       |
|--------------|----------|------------|
| 1 10/14/2014 | 1        | 10/29/2014 |
| 2 03/27/2015 | 2        | 03/27/2015 |
| 3            | 3        | 04/14/2015 |
| 4            | 4        |            |
| 5            | 5        |            |
| 6            | 6        |            |

Revised per City Government  
Added Additional Parking on Lots 6 & 7  
Revised per Owner / City Government

**CROSS ENGINEERING CONSULTANTS**  
1315 Temperance St  
McKinney, Texas 75060  
972.562.6409  
Tech PE, Firm No. 13908



**PAVING PLAN**  
CALIBER COLLISION  
CROSS DEVELOPMENT, INC.  
CITY OF CEDAR HILL, TEXAS


**C2**  
of  
**5**

SCANNED

MAY 13 2015

him

**HIGHWAY No. 67**



1 SITE PLAN  
 $1^{\circ} = 20'$

A graphic scale with markings at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The scale is labeled "GRAPHIC SCALE" at the top and "(in FEET)" at the bottom.

SITE DATA

ACRES..... 2.066 ±

BUILDING..... 15,846 BLDG A TOTAL SQ. FT. ±  
 (13,838 1ST FLR., 3,008 2ND FLR.)  
 8,894 BLDG B TOTAL SQ. FT. ±  
 25,740 SQ. FT. TOTAL (BOTH BLDGS.)

PARKING: (TYP. 9'x18')  
 BODY SHOP: 1/600 MIN.  
 PARKING REQUIRED:.....  
 PARKING PROVIDED:.....

43 SPACES  
 22 PUBLIC SPACES  
 (INCLUDING 1 ACCESSIBLE SPACE)  
 78 SPACES BEHIND GATED ACCESS  
 (100 TOTAL SPACES)

BODY SHOP STORAGE  
 SPACES..... 24 SPACES

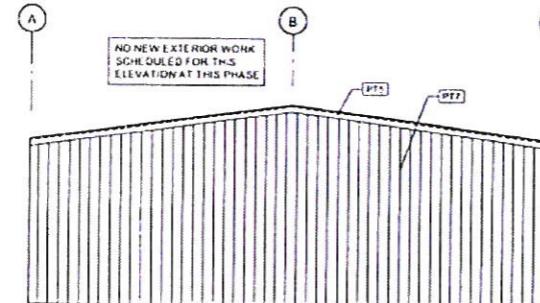
CALIBER COLLISION  
CEDAR HILL, TEXAS

PROJECT  
CALIBER COLLISION  
970 and 978 N. HWY 67  
CEDAR HILL, TEXAS 75104

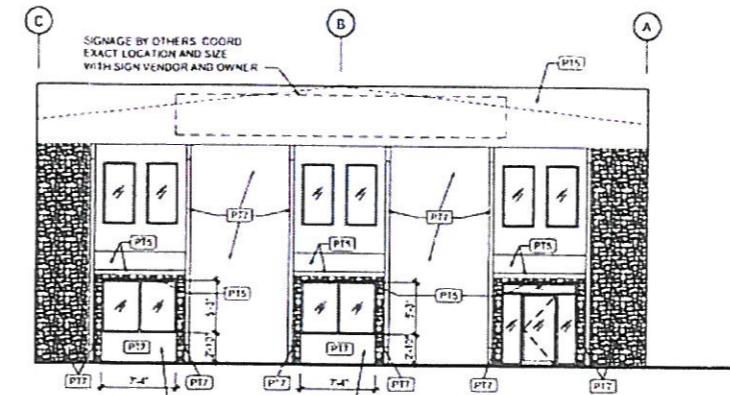
**REVISIONS**  
DATE  
PERMIT ISSUE: 09-22-14  
CITY COMMENTS: 10-15-14  
ADDENDUM #1: 10-15-14  
ADDENDUM #2: 10-29-14  
REVISION #2: 01-27-15  
REVISION #4: 03-27-15  
CITY COMMENTS: 04-14-15

09/22/14  
14049

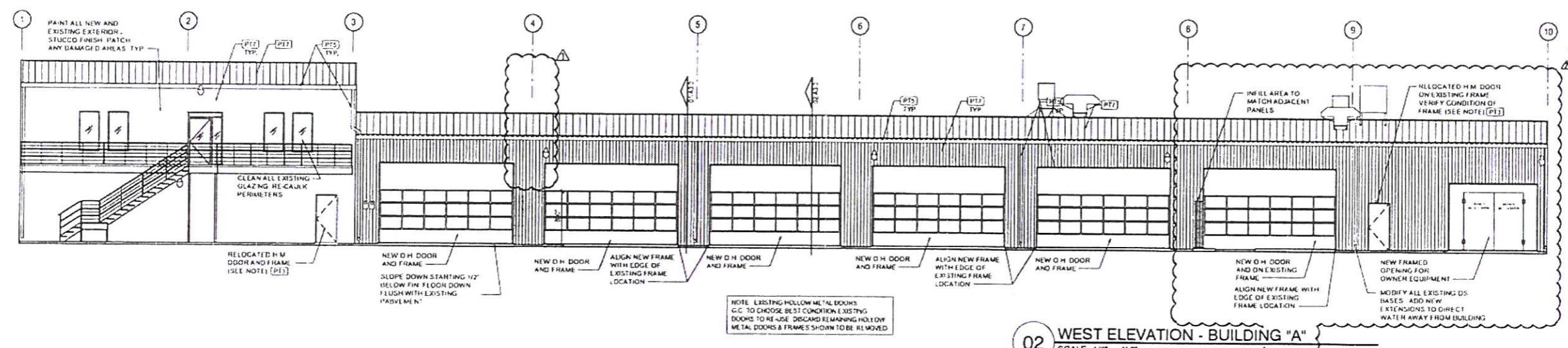
# SP1.0


## SITE PLAN

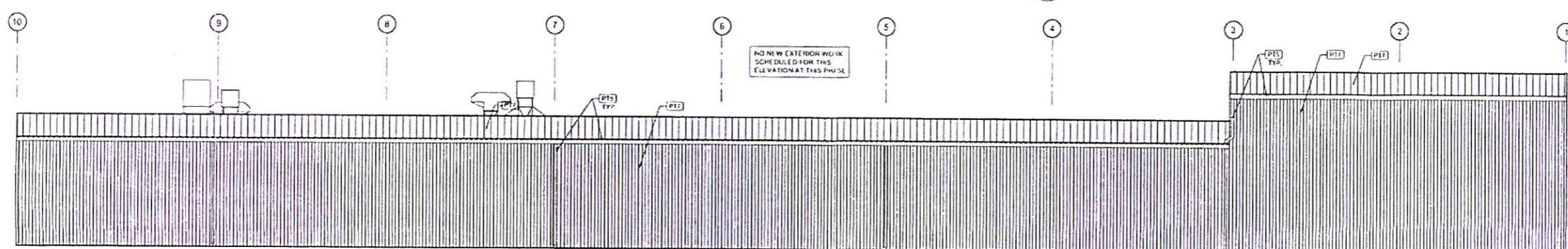



SCANNED

MAY 13 2015


by




04 SOUTH ELEVATION - BUILDING "A"  
SCALE: 1/8" = 1'-0"



03 NORTH ELEVATION - BUILDING "A"  
SCALE: 1/8" = 1'-0"



02 WEST ELEVATION - BUILDING "A"  
SCALE: 1/8" = 1'-0"



01 EAST ELEVATION - BUILDING "A"  
SCALE: 1/8" = 1'-0"

**GENERAL NOTES**

1. G.C. TO PROVIDE AN ALLOWANCE FOR RE-SEALING ALL EXISTING SKYLIGHTS AND TO VERIFY ANY DAMAGED OR CHALKED SKYLIGHTS FOR BOTH BUILDINGS.
2. G.C. TO PROVIDE AN ALLOWANCE FOR REPAIRING ANY DAMAGED GUTTERS OR DOWNSPOUTS FOR BOTH BUILDINGS.
3. REFER SHEET AT 4 FOR FINISHES AND MATERIALS.
4. G.C. TO PROVIDE AND INSTALL ALL NEW METAL BUILDING COMPONENTS.
5. G.C. TO VERIFY CONDITION OF EXISTING ROOF TOP UNITS FOR POSSIBLE RE-USE.

ARCHITECT:  
BRIAN RUMSEY  
1255 W. 15TH ST., SUITE 125  
PLANO, TEXAS 75075  
PH: 972.398.6644  
FAX: 972.312.8666  
brumsey@crossarchitects.com

CALIBER COLLISION  
CEDAR HILL, TEXAS

PROJECT:  
CALIBER COLLISION  
970 FM 978 N, HWY 87  
CEDAR HILL, TEXAS 75190

REVISIONS

NO. DATE  
PERMIT ISSUE: 04-22-14  
CITY COMMENTS: 04-15-14  
REV. #4: 03-27-15

DATE:  
09/22/14

PAGE NO.:  
14049

SHEET NUMBER:

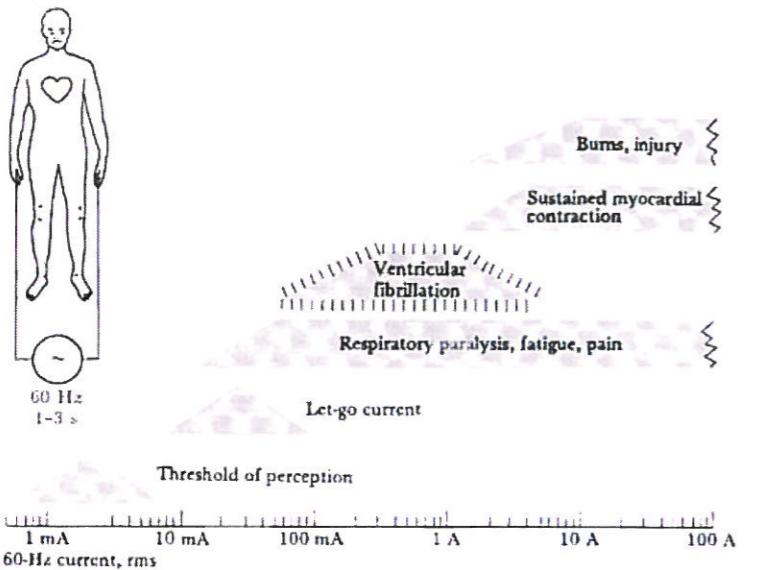
A2.0

EXTERIOR  
ELEVATIONS  
BLDG A

Copyright © 2014





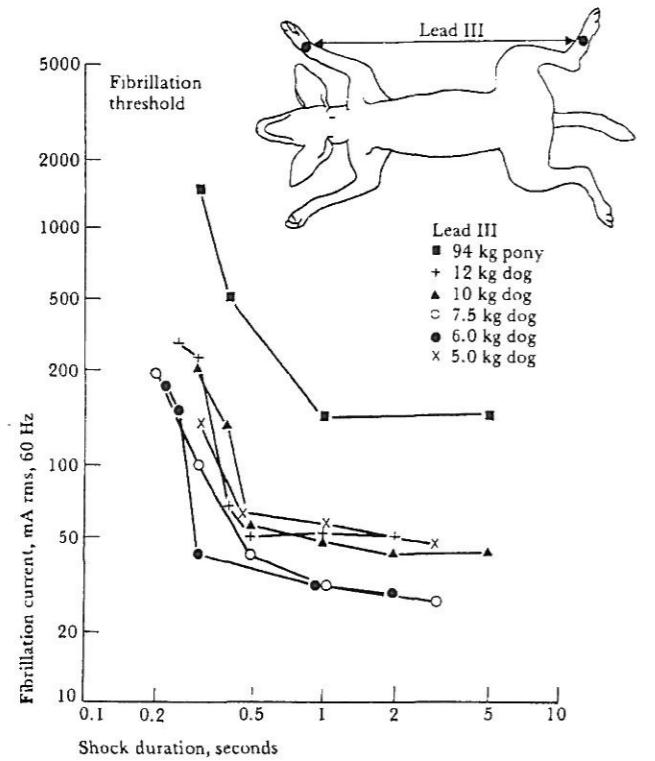

## Safety of electric security fences

John G. Webster  
Professor Emeritus of Biomedical Engineering  
University of Wisconsin-Madison  
Madison WI 53706

### Electric current shocks us, not voltage

Most of us can remember receiving an electric shock; it can happen during a regular day. How can that happen and when? Walking across a carpet during dry weather, then touching a doorknob and feeling a spark that jumps to the doorknob is a very common way. Placing a finger inside of a lamp socket that inadvertently was turned on is yet another. Touching the spark plug in a car or lawn mower has happened to many people as well. But why are we all still alive after receiving these electric shocks during a regular day? *We are still alive because even though the voltage is high, not enough electric current flowed through our heart.*

Even when the voltage is high, when the current flows for only a very short duration we can not be electrocuted. Furthermore, it is even hard to get electrocuted in the home because the power line voltage of 120 volts can't drive enough continuous current through the high resistance of our dry skin. Kitchens and bathrooms fall in a different category; they are dangerous places because our skin may be wet. When our skin is wet, our skin resistance is low and permits a large electric current to flow through the body as shown in Figure 1. A large enough current can cause ventricular fibrillation. During ventricular fibrillation the pumping action of the heart ceases and death occurs within minutes unless treated. In the United States, approximately 1000 deaths per year occur in accidents that involve cord-connected appliances in kitchens, bathrooms, and other wet locations.




**Figure 1** Physiological effects of electricity. Threshold or estimated mean values are given for each effect in a 70 kg human for a 1- to 3 s exposure to 60 Hz current applied via copper wires grasped by the hands. From W. A. Olson, Electrical Safety, in J. G. Webster (ed.), *Medical Instrumentation Application and Design*, 3<sup>rd</sup> ed., New York: John Wiley & Sons, 1998.

Department of Biomedical Engineering

### Short duration pulses are safer than continuous electric current


Figure 2 shows that shock durations longer than 1 second are the most dangerous. Note that as the shock duration is shortened to 0.2 seconds, it requires much more electric current to cause ventricular fibrillation. Electric security fences have taken advantage of this fact by shortening their shock duration to an even shorter duration of about 0.0003 seconds. Therefore, electric security fences are safe and do not lead to ventricular fibrillation due to the short 0.0003 second shock duration. .



**Figure 2** Thresholds for ventricular fibrillation in animals for 60-Hz ac current. Duration of current (0.2 to 5 s) and weight of animal body were varied. Fibrillation current versus shock duration for a 70 kg human is about 100 milliamperes for 5 second shock duration. It increases to about 800 milliamperes for 0.3 second shock duration. From L. A. Geddes, *IEEE Trans. Biomed. Eng.*, 1973, 20, 465–468.

### Electricity near the heart is most dangerous

There are four situations where electricity may be applied close to the heart. (1) Figure 3(b) shows when a catheter tube is threaded through a vein into the heart, any accidental current is focused within the heart and a small current can cause ventricular fibrillation. (2) Cardiac pacemakers also pass electric current inside the heart, but the current is kept so small that ventricular fibrillation does not occur. (3) A Taser weapon may rarely shoot a dart between the ribs very close to the heart and apply a 0.0001 second pulse, but this has not been shown to cause ventricular fibrillation. Typically when a person takes an overdose of drugs, he creates a disturbance, police are called, the person refuses to obey, the police Taser him, afterwards he dies of a drug overdose, and the newspapers report, “Man dies after Taser shot.” (4) A defibrillator applies a 0.005 second, 40 ampere electric current. This causes massive heart contraction that can change ventricular fibrillation to normal rhythm and save a life.



**Figure 3** Effect of entry points on current distribution. (a) *Macroshock*, externally applied current spreads throughout the body, (b) *Microshock*, all the current applied through an intracardiac catheter flows through the heart. From F. J. Weibell, "Electrical Safety in the Hospital," *Annals of Biomedical Engineering*, 1974, 2, 126–148.

When comparing an electric security fence to the above examples, we know that an electric security fence is similar to Figure 3(a). Why do we know that? If a person contacts an electric fence, electric current is concentrated in the limbs and causes a deterrent shock; when it continues to pass through the torso, it spreads out and becomes more diffuse. Therefore as shown in Figure 3(a) and in Figure 2 electric security fences are safe because the deterrent shock spreads out and becomes more diffuse and is of a very short duration.

#### Only power lines cause ventricular fibrillation

Table 1 shows that short duration electric pulses, even though applied near the heart do not cause ventricular fibrillation. In contrast, the continuous current from power lines kills 1000 persons per year.

**Table 1** Only power lines cause ventricular fibrillation

|                         | Duration of pulse in seconds | Current in amperes | Likely to be applied near heart? | Caused ventricular fibrillation? |
|-------------------------|------------------------------|--------------------|----------------------------------|----------------------------------|
| Power lines             | Continuous                   | 0.1                | No                               | 1000 per year                    |
| Electric security fence | 0.0003<br>0.8 times/sec      | 10                 | No                               | No                               |
| Taser                   | 0.0001<br>19 times/sec       | 2                  | May be                           | No                               |
| Cardiac pacemaker       | 0.001<br>1 time/sec          | 0.005              | Yes                              | No                               |
| Defibrillator           | 0.005<br>1 time              | 40                 | Yes                              | Cures ventricular fibrillation   |
| Spark plug              | 0.00002<br>1 time            | 0.2                | No                               | No                               |
| Doorknob                | 0.00002<br>1 time            | 0.2                | No                               | No                               |

**Sentry Security Systems, LLC position on the relationship of security fences  
to codes and standards**

Electric fencing is used safely throughout the world, with applications for both animal control and commercial security. In a commercial security setting, security fences deter crime and help apprehend criminals. The mere presence of a security fence discourages unlawful entry, theft and the destruction of property. Additionally, it is easier to apprehend the determined criminal because the owner and police are notified instantaneously when the criminal distorts or breaks the fence. Security fences also protect the people who work at a site, providing business owners and employees significant peace of mind.

The security fence sold by Sentry Security Systems is powered by a 12 volt DC marine (or similar) battery. The National Electric Code does not cover battery powered products such as smoke alarms. Therefore, the security fence sold by Sentry Security Systems is not covered by the NEC.

There is in fact no US standard that addresses security fences whether main or battery powered. UL 69 addresses animal control fences but not security fences. There is, however, a good international standard - IEC 60335-2-76 - that addresses security fences. This standard is attached for your information.

We respectfully request that you determine that, as a battery powered device, security fences do not fall under the National Electric Code.

## Safety of electric fence energizers

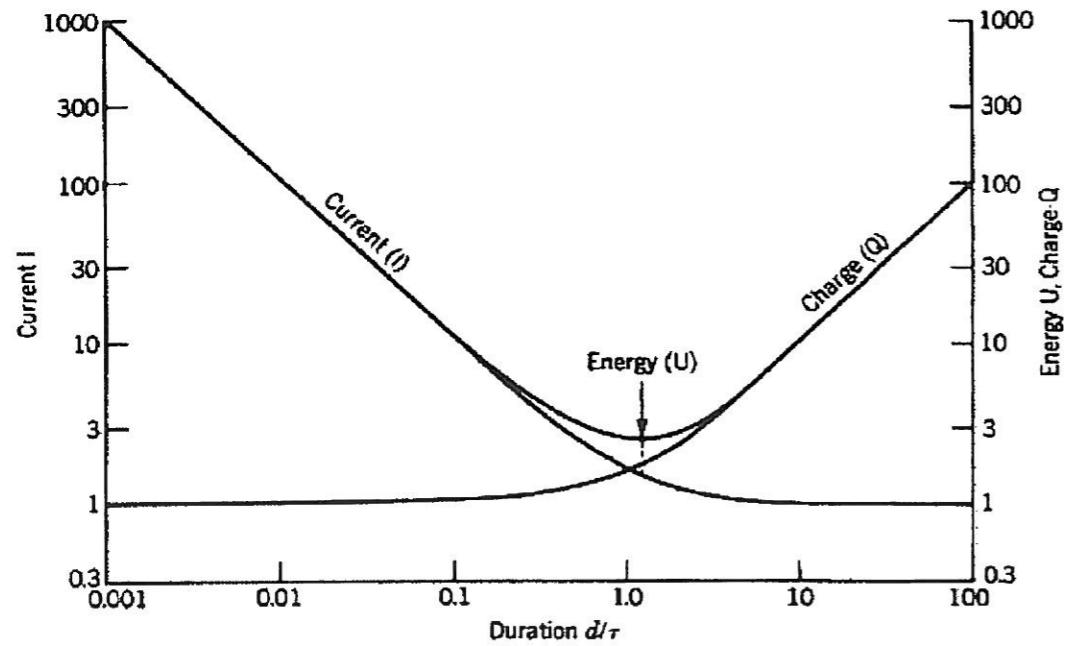
Amit J. Nimunkar<sup>1</sup> and John G. Webster<sup>1</sup>

<sup>1</sup>Department of Biomedical Engineering, University of Wisconsin, 1550 Engineering Drive, Madison, WI 53706 USA.

E-mail: [Webster@engr.wisc.edu](mailto:Webster@engr.wisc.edu) (John G. Webster) Tel 608-263-1574, Fax 608-265-9239

### Abstract

The strength-duration curve for tissue excitation can be modeled by a parallel resistor-capacitor circuit that has a time constant. We tested five electric fence energizers to determine their current-versus-time waveforms. We estimated their safety characteristics using the existing IEC standard and propose a new standard. The investigator would discharge the device into a passive resistor-capacitor circuit and measure the resulting maximum voltage. If the maximum voltage does not exceed a limit, the device passes the test.


Key words: strength-duration curve, cardiac stimulation, ventricular fibrillation, electric safety, electric fence energizers, standards.

### 1. Introduction

The vast majority of work on electric safety has been done using power line frequencies such as 60 Hz. Thus most standards for electric safety apply to continuous 60 Hz current applied hand to hand. A separate class of electric devices applies electric current as single or a train of short pulses, such as are found in electric fence energizers (EFEs). A standard that specifically applies to EFEs is IEC (2006). To estimate the ventricular fibrillation (VF) risk of EFEs, we use the excitation behavior of excitable cells. Geddes and Baker (1989) presented the cell membrane excitation model (Analytical Strength-Duration Curve model) by a lumped parallel resistance-capacitance ( $RC$ ) circuit. This model determines the cell excitation thresholds for varying rectangular pulse durations by assigning the strength-duration rheobase currents, chronaxie, and time constants (Geddes and Baker, 1989). Though this model was originally developed based on the experimental results of rectangular pulses, the effectiveness of applying this model for other waveforms has been discussed (IEC 1987, Jones and Geddes 1977). The charge-duration curve, derived from the strength-duration curve, has been shown in sound agreement with various experimental results for irregular waveforms. This permits calculating the VF excitation threshold of EFEs with various nonrectangular waveforms. We present measurements on electric fence energizers and discuss their possibility of inducing VF.

### 2. Mathematical background and calculation procedures

Based on the cell membrane excitation model (Weiss-Lapique model), Geddes and Baker (1989) developed a lumped  $RC$  model (analytical strength-duration curve) to describe the membrane excitation behavior. This model has been widely used in various fields in electrophysiology to calculate the excitation threshold. Figure 1 shows the normalized strength-duration curve for current ( $I$ ), charge ( $Q$ ) and energy ( $U$ ). The expression of charge is also known as the charge-duration curve which is important for short duration stimulations.



**Figure 1.** Normalized analytical strength-duration curve for current  $I$ , charge  $Q$ , and energy  $U$ . The  $x$  axis shows the normalized duration of  $d/\tau$ . Note that for  $d \ll \tau$ ,  $Q$  is constant and the most appropriate variable for estimating cell excitation. (from Geddes and Baker, 1989).

The equation for the strength-duration curve is (Geddes and Baker, 1989),

$$\Delta v = IR \left(1 - e^{-\frac{t}{\tau}}\right), \quad (1)$$

where  $I$  is a step current intensity,  $R$  is the shunt resistance,  $\Delta v$  is the depolarization potential threshold which is about 20 mV for myocardial cells,  $\tau$  is the  $RC$  time constant, and  $t$  is the time  $I$  is applied.

If we let the stimulation duration go to infinity, the threshold current is defined as the rheobase current ( $I = b$ ). If we substitute  $I$  in equation (1) by  $b$  and define the threshold current  $I_d = \Delta v/R$  for the stimulation with duration  $d$ . Equation (1) becomes,

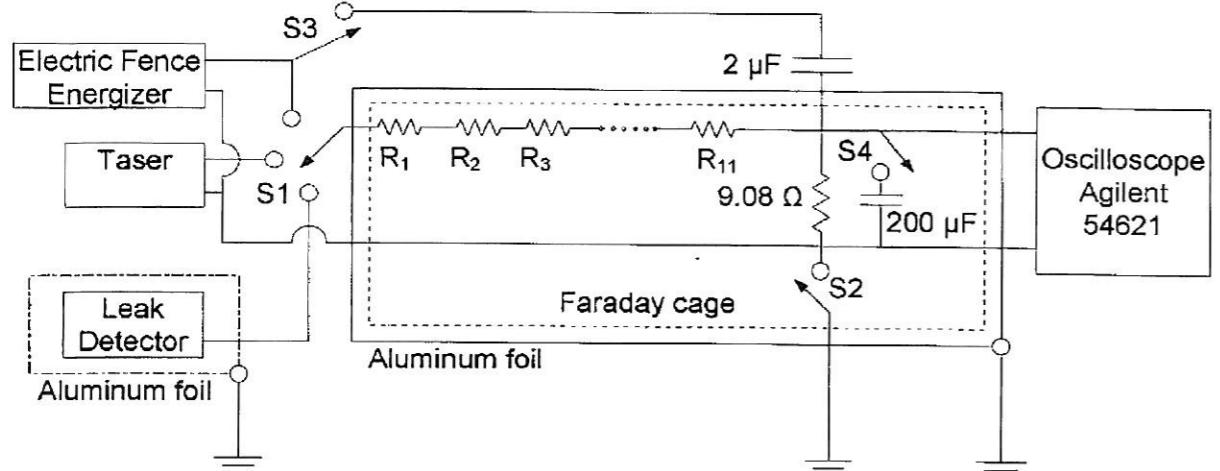
$$I_d = \frac{b}{1 - e^{-\frac{d}{\tau}}}. \quad (2)$$

We can calculate the threshold charge ( $Q_d$ ) by integrating equation (2) and it becomes,

$$Q_d = I_d d = \frac{bd}{1 - e^{-\frac{d}{\tau}}}, \quad (3)$$

For short duration stimulation ( $d \ll \tau$ ) with duration shorter than 0.1 times the  $RC$  time constant, equation (3) can be approximated by equation (4) and it yields equation (5),

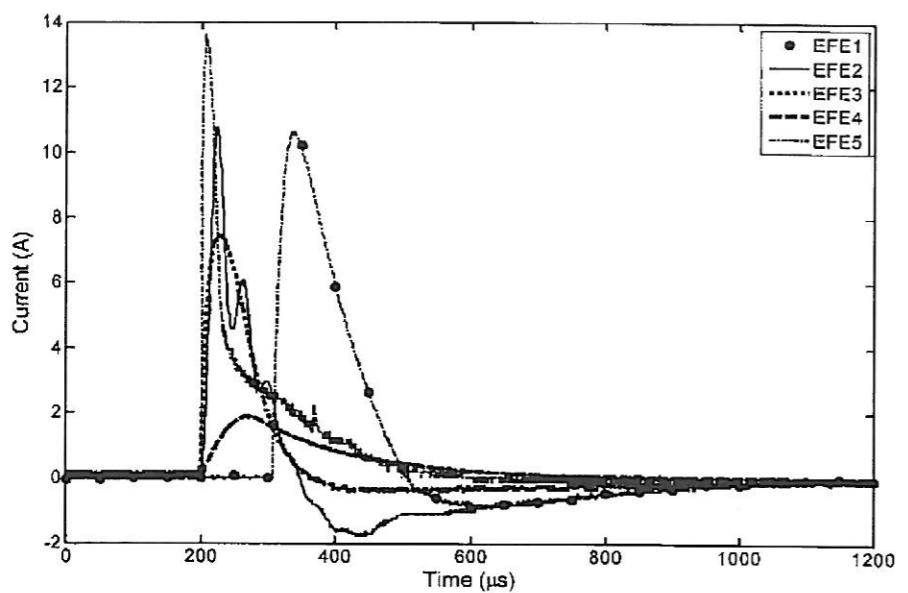
$$1 - e^{-\frac{d}{\tau}} \approx \frac{d}{\tau}, \quad (4)$$


$$Q_d = b\tau \quad (5)$$

Equation (5) suggests that the charge excitation threshold for short duration stimulation is constant and equals the product of the  $RC$  time constant  $\tau$  and the rheobase  $b$ . Geddes and Bourland (1985) showed that the charge-duration curve for single rectangular, trapezoidal, half sinusoid and critically damped waveforms had a good agreement for short duration stimulations. Therefore we used the same model to estimate thresholds for stimulation sources where  $I$  was not constant, under the same stimulation setting.

Cardiac cell excitation has been intensively studied at the 60 Hz power line frequency because most accidental electrocutions occur with 60 Hz current, which has a longer duration relative to the cardiac cell time constant of about 2 ms. However, EFEs operate with pulse durations much shorter than the time constant.

### 3. Methods


Figure 2 shows our experimental test set-up. The EFEs under test consist of Gallagher Group Ltd PowerPlus B600 (EFE1), Gallagher Group Ltd PowerPlus B280 (EFE2), Speedrite HPB (EFE3), Intellishock 20B (EFE4) and Blitzer 8902 (EFE5) EFEs. The short duration electrical pulses from these EFEs are passed through a series of eleven  $47\ \Omega$  (ARCOL D4.29, HS50 47 R F) resistors which measure  $518\ \Omega$ , which represents approximately the internal resistance of the human body. It is further connected to two  $18\ \Omega$  (RH 10 207 DALE 10 W 3%) resistors connected in parallel which measure  $9.08\ \Omega$ . This is used as the sensing resistor across which the oscilloscope measures the output voltage. For these very short pulses it is important to use noninductive resistors because the same current flowing through a resistor that has substantial inductance will measure a larger current than a resistor that is noninductive. To reduce electromagnetic interference, a faraday cage, covered with aluminum foil, was connected to ground. This diverted the electromagnetic interference to ground. The data were collected in EXCEL format from a disk in the Agilent 54621 oscilloscope. The calculations for different parameters presented in Table 1 and the Figures 3–5 were plotted using MATLAB.



**Figure 2.** The EFE is selected by S1. The current flows through a string of  $47\ \Omega$  resistors  $R_1-R_{11}$  (total  $518\ \Omega$ ) which approximates the internal body resistance of  $500\ \Omega$ . The  $9.08\ \Omega$  yields a low voltage that is measured by the oscilloscope.

### 3.1. Determination of current

EFEs are used in conjunction with fences wires to form animal control fences and security fences. We tested five EFEs (EFE1–EFE5) using the experimental set-up in Figure 2 and obtained the output currents shown in Figure 3.



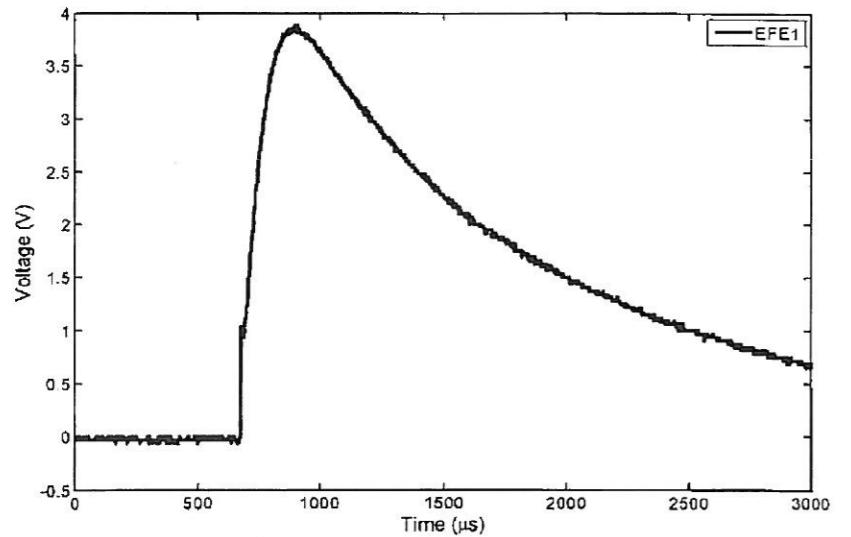
**Figure 3.** The output current waveform for five EFEs. EFE1 yields about  $7.75\ A$  for  $151\ \mu s = 1170\ \mu C$ , EFE2 yields about  $3.34\ A$  for  $345\ \mu s = 1150\ \mu C$ , EFE3 yields about  $5.69\ A$  for  $91\ \mu s =$

518  $\mu$ C, EFE4 yields about 1.25 A for 252  $\mu$ s = 315  $\mu$ C and EFE5 yields about 5.7 A for 137  $\mu$ s = 781  $\mu$ C.

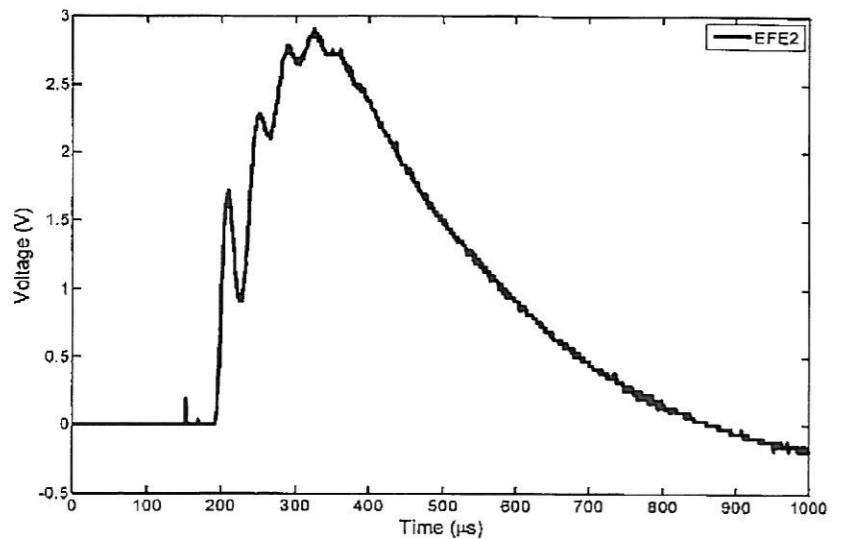
#### 4. Results

Table 1 shows the approximate results for the rms current, power, duration and charge for all the EFEs.

**Table 1** Approximate results for all EFEs.


| EFEs                          |                 | EFE1 | EFE2 | EFE3 | EFE4 | ECF5 |
|-------------------------------|-----------------|------|------|------|------|------|
| Parameters                    | Units           |      |      |      |      |      |
| <b>A. (IEC)</b>               |                 |      |      |      |      |      |
| Total Energy                  | $A^2 \text{ms}$ | 7.94 | 4.04 | 3.10 | 0.42 | 4.69 |
| 95% Energy Duration           | $\mu\text{s}$   | 129  | 346  | 91   | 253  | 138  |
| $I_{\text{rms}}$              | A               | 7.65 | 3.33 | 5.69 | 1.25 | 5.69 |
| IEC Standard $I_{\text{rms}}$ | A               | 13.0 | 6.21 | 16.8 | 7.85 | 7.37 |
| Pass IEC Standard             | Yes/No          | Yes  | Yes  | Yes  | Yes  | Yes  |
| <b>B. Proposed standard</b>   |                 |      |      |      |      |      |
| Voltage                       | V               | 3.88 | 2.91 | NAv  | NAv  | NAv  |
| Duration                      | $\mu\text{s}$   | 233  | 132  |      |      |      |
| Current                       | A               | 3.33 | 4.41 |      |      |      |
| Charge                        | $\mu\text{C}$   | 776  | 582  |      |      |      |

NA- not applicable, NAv- not available


IEC (2006) defines in 3.116 “impulse duration: duration of that part of the impulse that contains 95% of the overall energy and is the shortest interval of integration of  $P(t)$  that gives 95% of the integration of  $P(t)$  over the total impulse.  $I(t)$  is the impulse current as a function of time.” In 3.117 it defines “output current: r.m.s. value of the output current per impulse calculated over the impulse duration.” In 3.118 it defines “standard load: load consisting of a non-inductive resistor of  $500 \Omega \pm 2.5 \Omega$  and a variable resistor that is adjusted so as to maximize the energy per impulse or output current in the  $500 \Omega$  resistor, as applicable.” In 22.108, “Energizer output characteristics shall be such that – the impulse repetition rate shall not exceed 1 Hz; – the impulse duration of the impulse in the  $500 \Omega$  component of the standard load shall not exceed 10 ms; – for energy limited energizers the energy/impulse in the  $500 \Omega$  component of the standard load shall not exceed 5 J; The energy/impulse is the energy measured in the impulse over the impulse duration. – for current limited energizers the output current in the  $500 \Omega$  component of the standard load shall not exceed for an impulse duration of greater than 0.1 ms, the value specified by the characteristic limit line detailed in Figure 102; an impulse duration of not greater than 0.1 ms, 15 700 mA. The equation of the line relating impulse duration (ms) to output current (mA) for  $1000 \text{ mA} < \text{output current} < 15700 \text{ mA}$ , is given by impulse duration =  $41.885 \times 10^3 \times (\text{output current})^{-1.34}$ .” We used these definitions and calculated the total energy, the shortest duration where 95% of the total energy occurs, the rms current for that duration from Figure 3 for the EFEs (EFE1–EFE5). Similarly we calculated the output current using the relationship impulse duration =  $41.885 \times 10^3 \times (\text{output current})^{-1.34}$ , provided by the IEC for all the EFEs (EFE1–EFE5). Table 1 lists these under the heading “A. (IEC)”. Table 1 shows that all the EFEs pass the IEC standard.

### 5. Proposed new standard

IEC (2006) uses the rms current for the shortest duration where 95% of the total energy occurs as the standard to determine if the EFE is safe for use. Geddes and Baker (1989) have shown that for pulses shorter than the cardiac cell time constant of 2 ms, the electric charge is the quantity that excites the cells. We propose a simple experimental set-up shown in Figure 2 to determine the maximum amount of charge that would flow from the EFEs and cause cardiac cell excitation. The cardiac cell is modeled as an  $RC$  circuit in Fig. 2 with  $R = 9.08 \Omega$  and  $C = 200 \mu\text{F}$  (GECONOL 9757511FC 200  $\mu\text{F} \pm 10\%$  250 VPK) with the  $RC$  time constant of 1.82 ms. For the EFEs (EFE1 and EFE2) the switches S1 and S4 are closed. This allows the 200  $\mu\text{F}$  capacitor to charge rapidly (about 100  $\mu\text{s}$ ) and discharge fairly slowly ( $\tau = RC = 1.82 \text{ ms}$ ). Figures 4 and 5 show the voltage vs time waveforms for the different EFEs. The test was not performed for electric fence energizers EFE3–EFE5.



**Figure 4.** Output voltage waveform for EFE1. The maximal charge that flows through the cardiac cell model is given by  $Q = CV = 200 \mu\text{F} \times 3.88 \text{ V} = 775 \mu\text{C}$ , the current during which the capacitor charges to maximal value is given by  $I = CV/T = (200 \mu\text{F} \times 3.88 \text{ V})/233 \mu\text{s} = 3.33 \text{ A}$ .



**Figure 5.** Output voltage waveform for the electric fence energizers EFE2. The maximal charge that flows through the cardiac cell model is given by  $Q = CV = 200 \mu\text{F} \times 2.91 \text{ V} = 582 \mu\text{C}$ , the current during which the capacitor charges to maximal value is given by  $I = CV/T = (200 \mu\text{F} \times 2.91 \text{ V})/132 \mu\text{s} = 4.41 \text{ A}$ .

## 6. Discussion

Geddes and Baker (1989) have shown that for pulses shorter than the cardiac cell time constant of 2 ms, the electric charge is the quantity that excites cardiac cells. Because the first half wave is the largest, the charge integrated in the first half wave determines cardiac cell excitation. The next half wave discharges the cardiac cell capacitance and does not contribute to cardiac cell excitation. Thus we list integral  $I(t) = \text{charge } Q$  in Table 1.

IEC (2006) integrates  $I^2(t)$ , which is roughly equal to  $I(t)$ . Their Figure 102 roughly follows charge.

We propose revising EFE standards for measuring current to determine a safety standard to prevent VF. The new standard would measure cardiac cell excitation. It would not require the complex calculations required to determine “The current which flows during the time period in which 95 percent of the output energy (is delivered).” It would use a simple circuit similar to that in Figure 2 composed of resistors and a capacitor. The investigator would discharge the device into the circuit and measure the maximum voltage. If the maximum voltage does not exceed 5 V (as a conservative estimate), the EFE passes the test. The  $500 \Omega$  resistor closely approximates the resistance of the body and determines the current that flows through the body.

## Acknowledgements

We thank L Burke O’Neal and Silas Bernardoni for their help and suggestions.

## References

Geddes L A, and Baker L E 1989 *Principles of applied biomedical instrumentation* (New York: John Wiley & Sons) pp 458–61

Geddes L A and Bourland J D 1985 The strength-duration curve. *IEEE. Trans. Biomed. Eng.* **32**(6) 458–9

IEC 1987 *International Electrotechnical Commission IEC Report: Effects of current passing through the human body* (IEC 60479-2) pp 47

IEC 2006 *Household and similar electrical appliances – Safety – Part 2-76: Particular requirements for electric fence energizers*, (IEC 60335-2-76, Edition 2.1)

Jones M and Geddes L A 1977 Strength duration curves for cardiac pacemaking and ventricular fibrillation *Cardiovasc. Res. Center Bull.* **15** 101–12

Pictures of installed E6D

















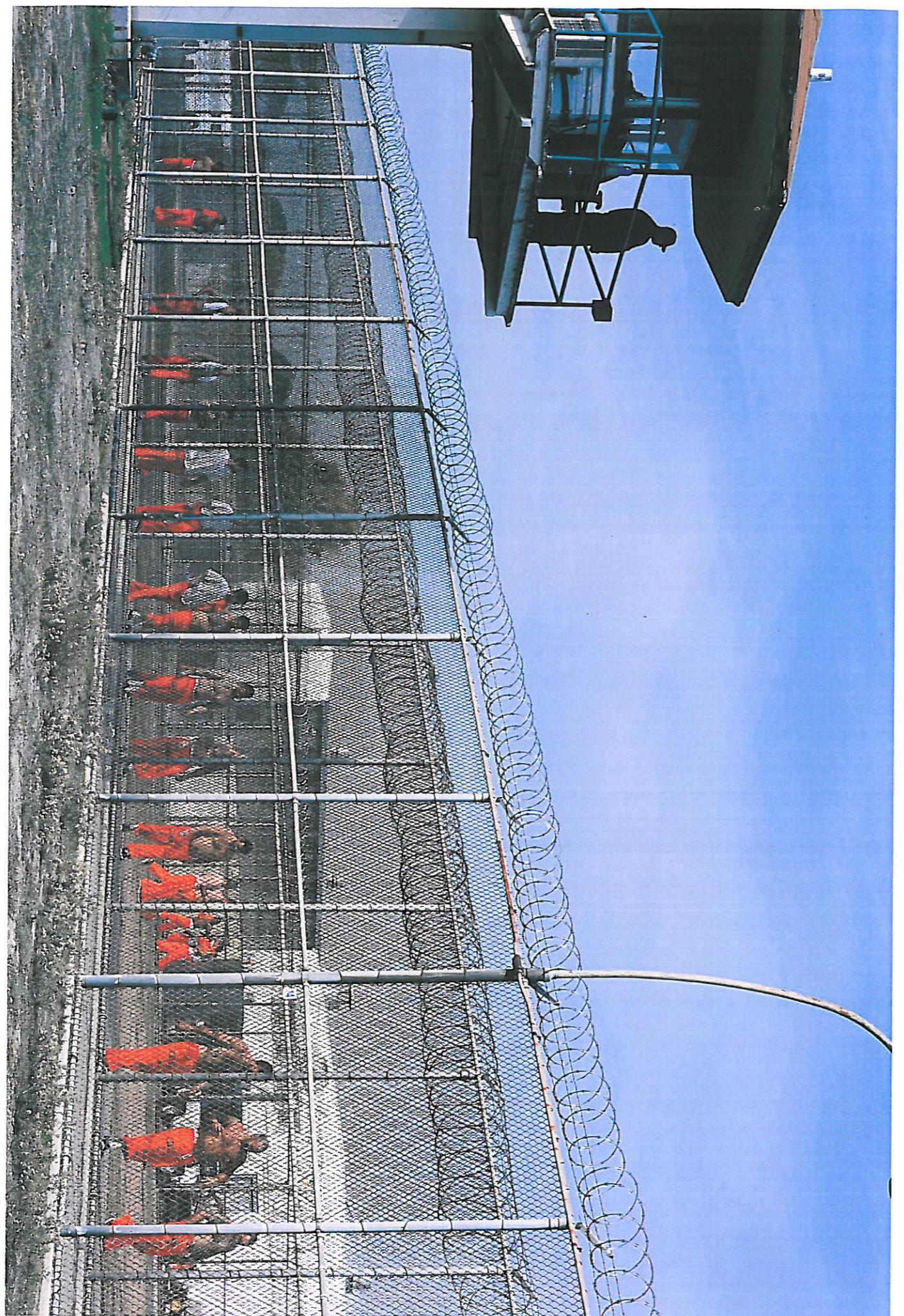


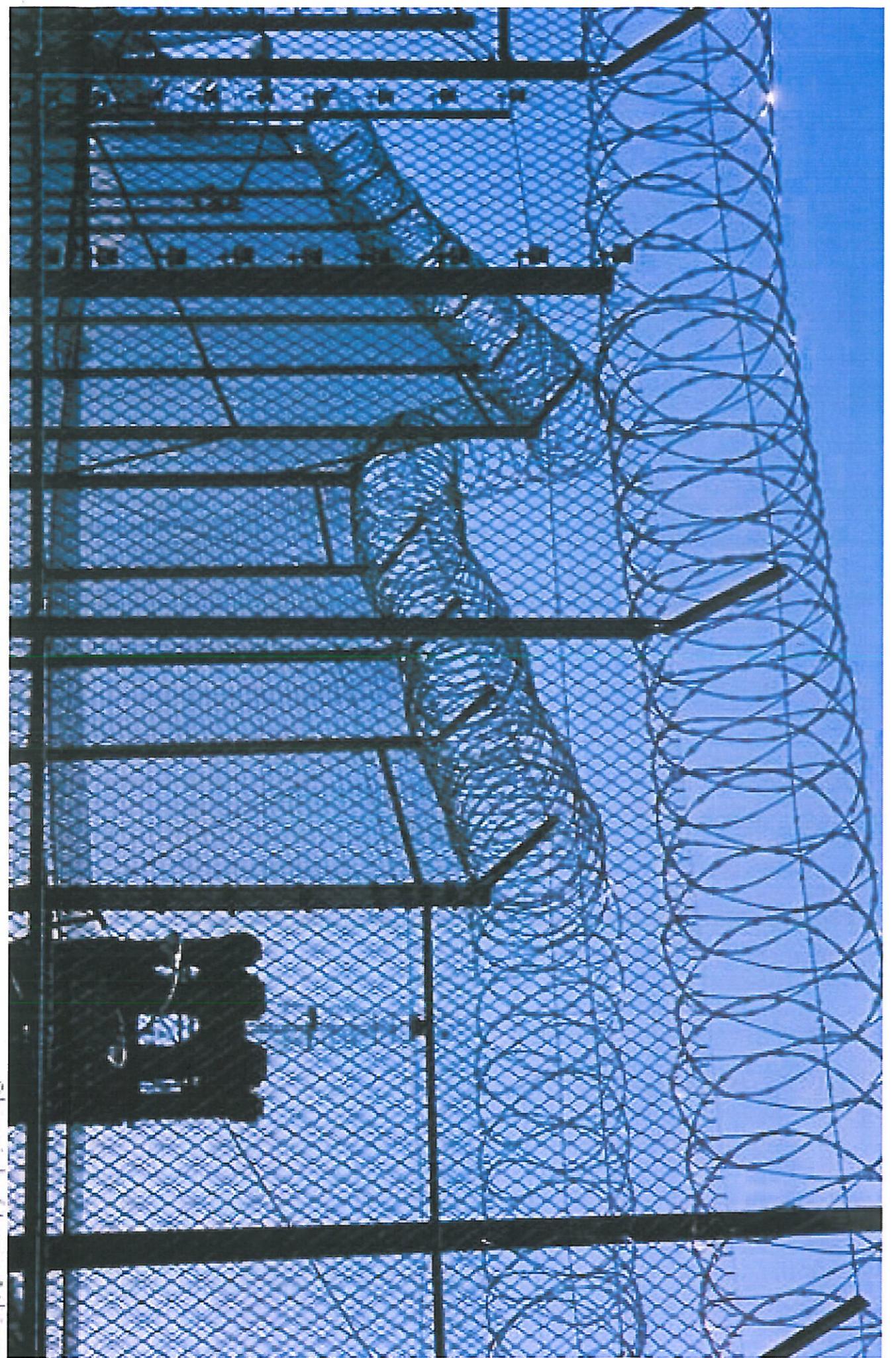








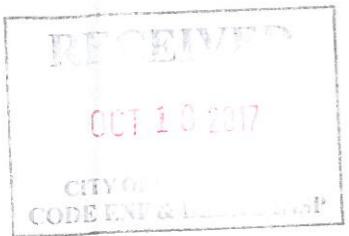




Pictures of Prisons








Chronicle / Lacy Atkins









10/18/17  
CR/Visa  
125-  
JC

BOARD OF ADJUSTMENT  
APPLICATION FORM

Owner Joe Property & Construction Systems Applicant Joe Lara  
Address 3820 Spring Valley Rd. LLC. Address 3820 Spring Valley Rd. #908  
#908 Addison TX 75001 Addison TX 75001  
Phone Number 214-334-4030 Phone Number 214-334-4030

Address of property requesting variance:

Apex. 1001 Lakeview DR  
363

Legal Description of Property:

Plat App. Lot 1, Block 1, of Joe Property Addition Subdivision  
Submitted 15-17 AND/OR

Tract 2,6, Block Abstract 492, John N. Guiner Abstract 492 Survey

Explain Variance Desired minimum side yard (interior) 10 ft. Rather than 20  
Variance for the minimum Lot width 125 ft (Back) 43.6 ft  
Variance minimum Lot area of 1 Acre to the .702 ACRE

Zoning Ordinance No. 3.3, Section 3.3.3, Requirement  
minimum Lot area 1 Acre, minimum Lot width 125 ft  
minimum side yard 20 ft

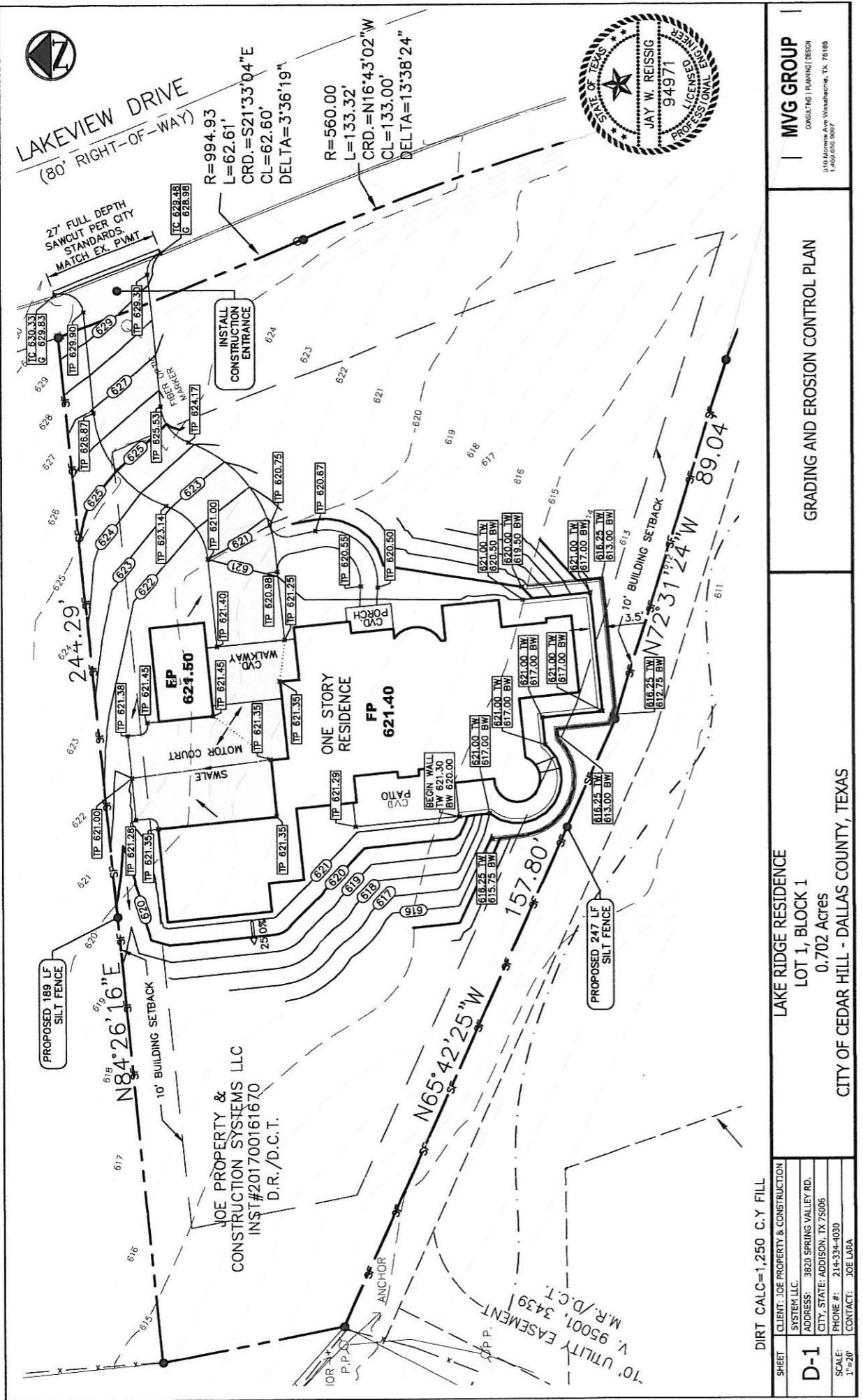
Give reason for hardship and justify need for variance Property was subdivided  
without a subdivision Plat.

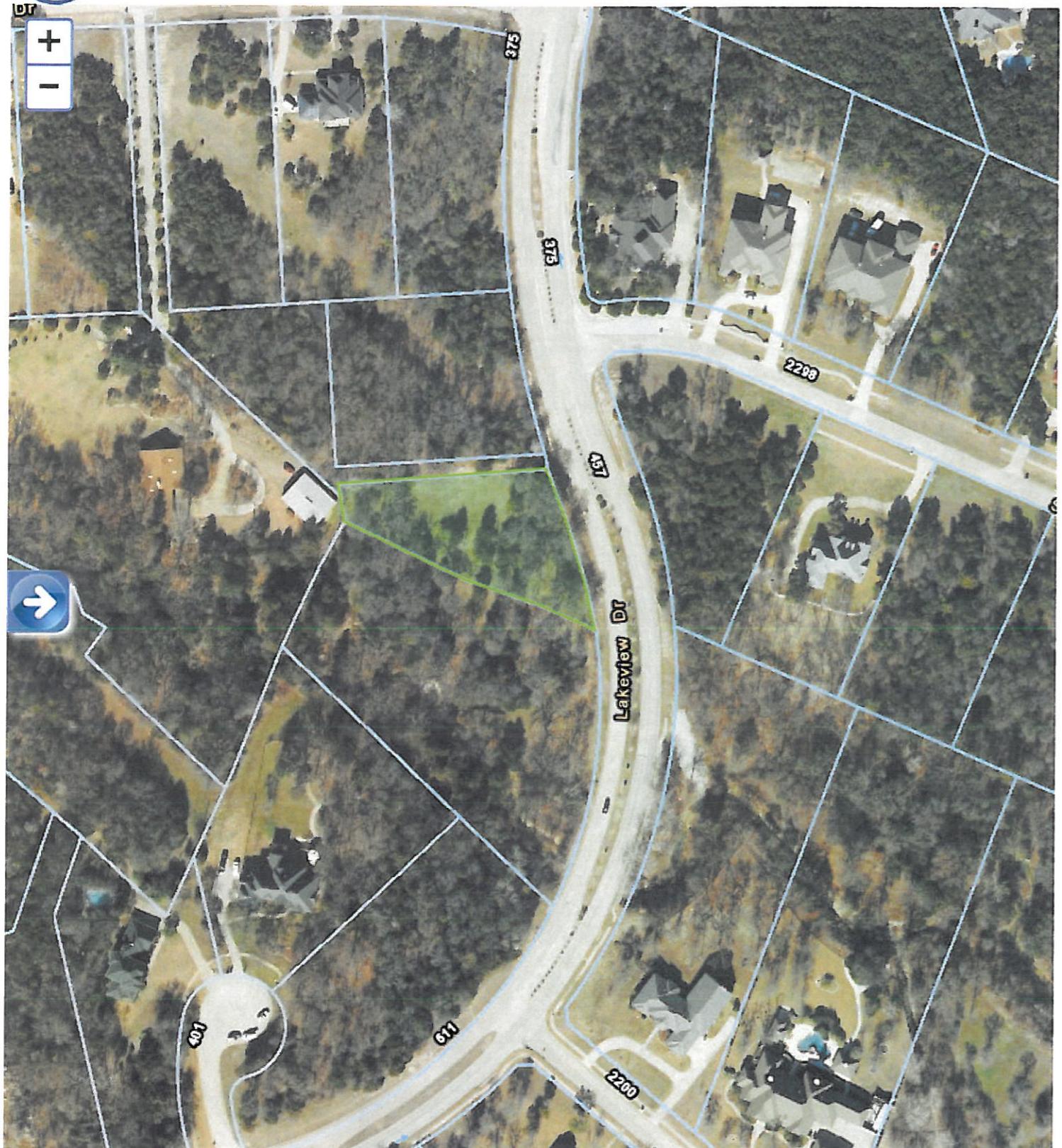
Attachments required: Survey of property desiring variance, and all supporting documents for variance requested.

I am the owner of the herein described property and Joe G. Lara Jr. is  
Authorized to file this application on my behalf.

X Joe G. Lara  
Applicant

X Joe Property & Construction  
Owner Systems LLC.


Existing Zoning: SF-E


Filing Date: 10/18/2017

\*\*Submit Application with Plot Plan, supporting documents & Filing Fee)\*\*

Residential Fee: \$125.00

Non-residential Fee: \$250.00



DCAD  
Property Map

0 100 200ft

**SECTION 3.3 SF-E – SINGLE-FAMILY RESIDENTIAL DISTRICT -- ESTATE****3.3.1 Purpose:**

The “SF-E”, Estate District is designed to create areas of low density, contemporary detached single family housing to be located on large lots - not less than one acre, with large setbacks, which are protected from excessive noise, illumination, odors, visual clutter and other influences that are generally objectionable or not conducive to family living. This purpose should be achieved through curvilinear, well-landscaped and unified street-scaped streets. The intent of this district is to provide high quality larger single-family housing while maintaining the natural environment and open space in the City.

**3.3.2 Authorized Uses:**

- A. Those uses listed for the SF-E – Single-Family Residential—Estate district in Section 4.1.2 (Use Charts) as “P” or “C” are authorized uses permitted by right or conditionally permitted uses, respectively. Conditional uses must be approved utilizing procedures set forth in Section 3.20.

**3.3.3 District Development Standards:****A. Lot Dimension Requirements —**

|                   |                               |
|-------------------|-------------------------------|
| Minimum Lot Area  | —1 acre (43,560 square feet). |
| Minimum Lot Width | —125 feet                     |
| Minimum Lot Depth | —150 feet                     |

**B. Yard Requirements —**

|                                 |          |
|---------------------------------|----------|
| Minimum Front Yard              | —30 feet |
| Minimum Side Yard (interior)    | —20 feet |
| Minimum Side Yard (street side) | —30 feet |

**C. Structure Standards —**

|                          |                                                                                                                                                       |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum Lot Coverage     | —40% main and accessory buildings                                                                                                                     |
| Maximum Height           | —35 feet                                                                                                                                              |
| Minimum Living Area      | —2,500 square feet.                                                                                                                                   |
| Minimum Exterior Masonry | —100% of the front wall elevation and 80% of each additional wall elevation; for additional standards see Section 5.7. (Ord No. 01-71, § 2, 07-21-01) |

**D. Minimum Off-Street Parking**

—2 enclosed parking spaces; for additional standards see Section 5.1 (Ord No. 09-377, § 2, 01-13-09)

**E. Landscaping Requirements**

—None (see Section 5.2) (Ord No. 09-377, § 2, 01-13-09)

**F. Screening Requirements**

—See Section 5.3 (Ord No. 09-377, § 2, 01-13-09)

**F. Screening Requirements**

—See Section 5.3

(Ord. No. 09-377, § 2, 01-13-09)

**G. Other Requirements**

—See Sections 5.4 through 5.7

(Ord. No. 09-377, § 2, 01-13-09)

**H. Site Plan Requirements**

—None, except for non-residential uses allowed within residential districts; see Section 2.6

(Ord. No. 09-377, § 2, 01-13-09)

**I. Special Requirements**

—None

(Ord. No. 09-377, § 2, 01-13-09)



## Commercial Account #65049202010020600

[Location](#) [Owner](#) [Legal Desc](#) [Value](#) [Improvements](#) [Land](#) [Exemptions](#) [Estimated Taxes](#) [Building Footprint](#) [History](#)

### Location (Current 2018)

**Address:** 1001 LAKEVIEW DR  
**Market Area:** 0  
**Mapsco:** 81A-J (DALLAS)

[DCAD Property Map](#)
[View Photo](#)

### 2017 Appraisal Notice

#### Electronic Documents (ENS)


[Print Homestead Exemption Form](#)

### Owner (Current 2018)

JOE PROPERTY AND CONSTRUCTION  
 SYSTEMS LLC  
 1644 W ALABAMA ST STE 100  
 HOUSTON, TEXAS 770064102

### Value

| 2017 Certified Values             |       |               |
|-----------------------------------|-------|---------------|
| Improvement:                      | Land: | Market Value: |
|                                   | \$0   | + \$4,210     |
| <b>Revaluation Year:</b>          | 2015  | = \$4,210     |
| <b>Previous Revaluation Year:</b> | 2013  |               |

### Multi-Owner (Current 2018)

| Owner Name                    | Ownership % |
|-------------------------------|-------------|
| JOE PROPERTY AND CONSTRUCTION | 100%        |

### Improvements (Current 2018)

No Improvements.

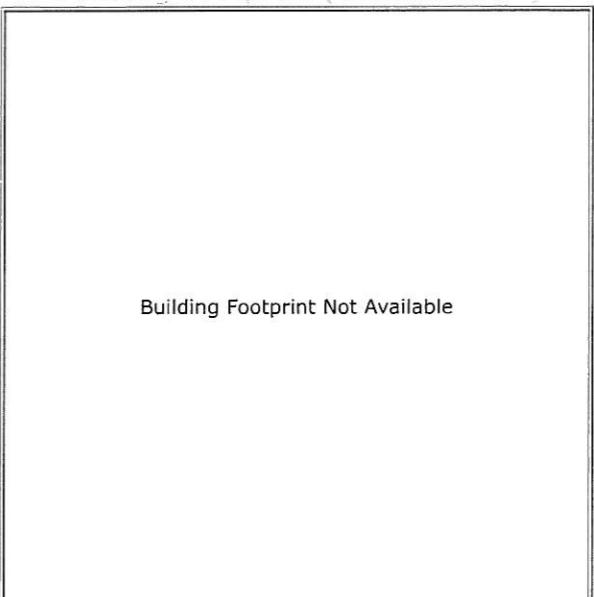
## Land (2017 Certified Values)

| # | State Code                              | Zoning        | Frontage (ft) | Depth (ft) | Area        | Pricing Method | Unit Price  | Market Adjustment | Adjusted Price | Ag Land |
|---|-----------------------------------------|---------------|---------------|------------|-------------|----------------|-------------|-------------------|----------------|---------|
| 1 | COMMERCIAL - VACANT PLOTTED LOTS/TRACTS | SINGLE FAMILY | 0             | 0          | 0.7020 ACRE | STANDARD       | \$10,000.00 | -40%              | \$4,212        | N       |

\* All Exemption information reflects 2017 Certified Values. \*

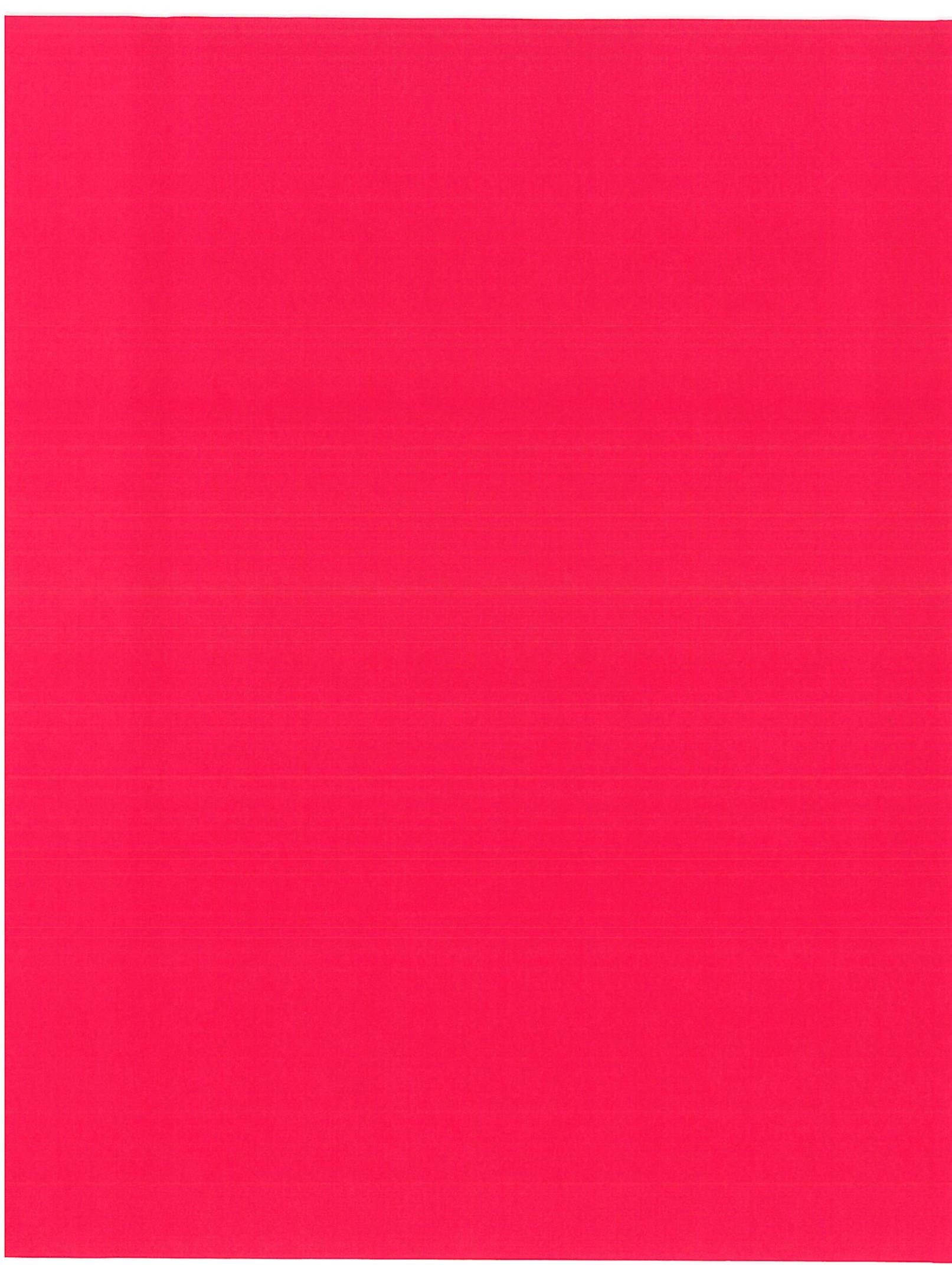
## Exemptions (2017 Certified Values)

No Exemptions


## Estimated Taxes (2017 Certified Values)

|                        | City       | School         | County and School Equalization | College                     | Hospital          | Special District |
|------------------------|------------|----------------|--------------------------------|-----------------------------|-------------------|------------------|
| Taxing Jurisdiction    | CEDAR HILL | CEDAR HILL ISD | DALLAS COUNTY                  | DALLAS CO COMMUNITY COLLEGE | PARKLAND HOSPITAL | UNASSIGNED       |
| Tax Rate per \$100     | \$0.69876  | \$1.516        | \$0.2531                       | \$0.124238                  | \$0.2794          | N/A              |
| Taxable Value          | \$4,210    | \$4,210        | \$4,210                        | \$4,210                     | \$4,210           | \$0              |
| Estimated Taxes        | \$29.42    | \$63.82        | \$10.66                        | \$5.23                      | \$11.76           | N/A              |
| Tax Ceiling            |            |                |                                |                             | N/A               | N/A              |
| Total Estimated Taxes: |            |                |                                |                             |                   | <b>\$120.89</b>  |

**DO NOT PAY TAXES BASED ON THESE ESTIMATED TAXES.** You will receive an **official tax bill** from the appropriate agency when they are prepared. Please note that if there is an Over65 or Disabled Person **Tax Ceiling** displayed above, **it is NOT reflected** in the Total Estimated Taxes calculation provided. Taxes are collected by the agency sending you the **official** tax bill. To see a listing of agencies that collect taxes for your property. [Click Here](#)


The estimated taxes are provided as a courtesy and should not be relied upon in making financial or other decisions. The Dallas Central Appraisal District (DCAD) does not control the tax rate nor the amount of the taxes, as that is the responsibility of each Taxing Jurisdiction. Questions about your taxes should be directed to the appropriate taxing jurisdiction. We cannot assist you in these matters. These tax estimates are calculated by using the most current certified taxable value multiplied by the most current tax rate. **It does not take into account other special or unique tax scenarios, like a tax ceiling, etc.** If you wish to calculate taxes yourself, you may use the TaxEstimator to assist you.


## Building Footprint (Current 2018)



History

[History](#)





**BOARD OF ADJUSTMENT  
APPLICATION FORM**

Owner Ragan, LLC.  
Address 1907 Marilla St., 2nd Floor  
Dallas, Texas 75201  
Phone Number 214-233-0485  
Email address: tragan@wildcatmanagement.net

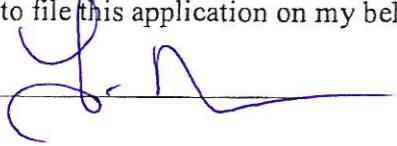
Applicant Tanya Ragan  
Address 1907 Marilla St., 2nd Floor  
Dallas, Texas 75201  
Phone Number 214-233-0485  
Email address: tragan@wildcatmanagement.net

Address of property requesting variance: 601 Jealouse Way, Cedar Hill, Texas 75104  
Legal Description of Property:

Lot 5, Block A, of B & J Ind District 2nd Inst Rep Subdivision

AND/OR

Tract       , Block       ,        Survey


Explain Variance Desired A variance allowing an existing building to protrude the 35' building setback line against Hall Street.

Zoning Ordinance No. 2001-64, Section 3.18.3.B, Requirement 35 foot building minimum setback requirement on corner lots

Give reason for hardship and justify need for variance  
Current setback affects the existing building ownership. Other adjacent property owners have been granted variances in the past.

Attachments required: Survey of property desiring variance, and all supporting documents for variance requested.

I am the owner of the herein described property and Tanya Ragan is  
Authorized to file this application on my behalf.

X  
Applicant 

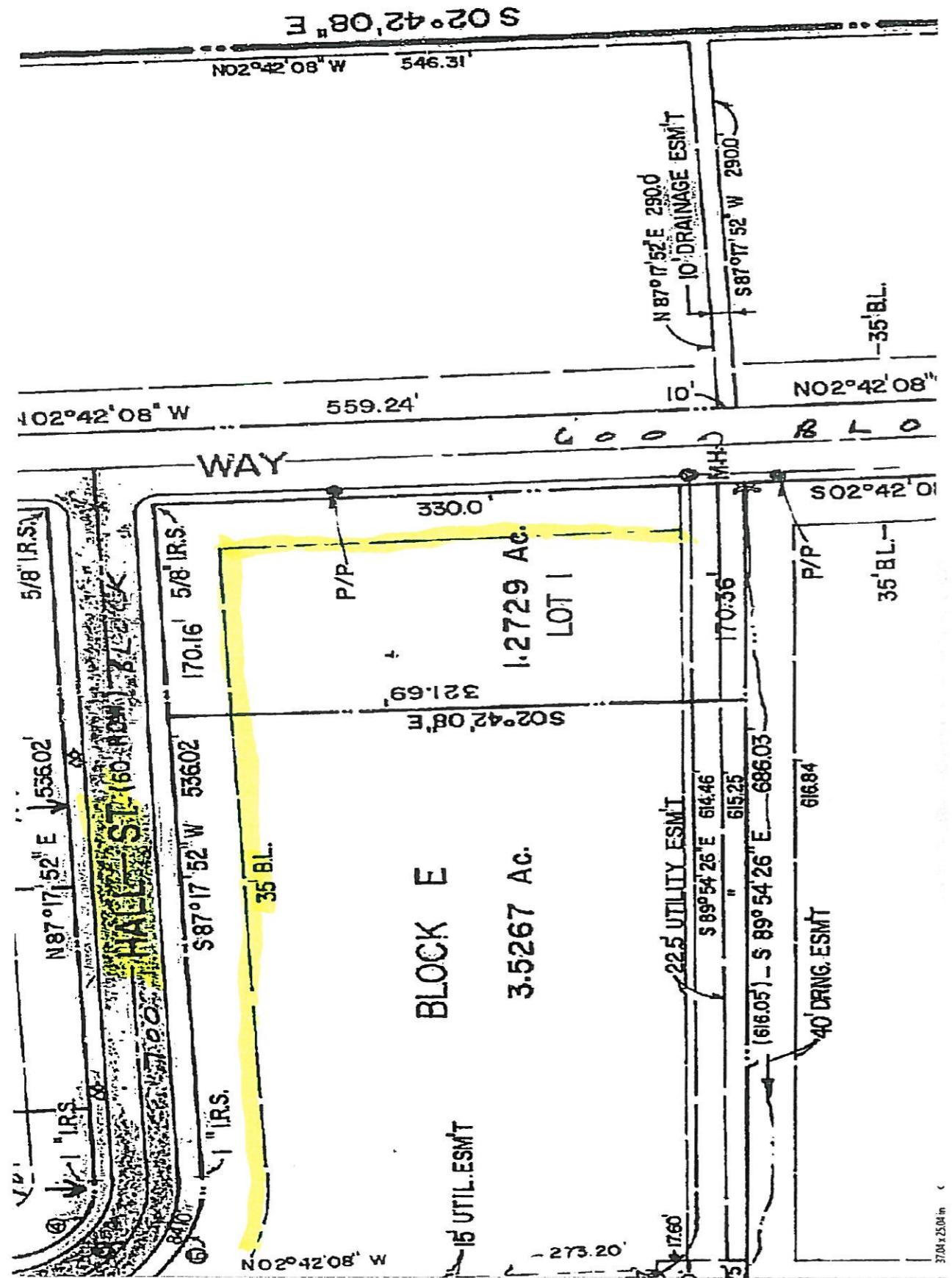
X  
Owner 


Existing Zoning: Industrial District

Filing Date: 10-12-17

\*\*Submit Application with Plot Plan, supporting documents & Filing Fee)\*\*

Residential Fee: \$125.00


Non-residential Fee: \$250.00

DCAD  
Property Map

0 50 100ft



0 100 200ft





**SECTION 3.18 I-INDUSTRIAL DISTRICT****3.18.1 Purpose:**

The “I”, Industrial District is intended to provide for light industrial and light manufacturing uses that are somewhat limited in nature and function of permissive uses, such as assembling and fabrication, warehousing, wholesaling and service operations that do not depend upon frequent customer or client visits. The developments in this district should be in accordance to established performance standards and shall be characterized by large setbacks, minimal building coverage, off street parking and loading facilities, and landscaping and buffering requirements. This district should also require accessibility to major thoroughfares, major highways, or other means of transportation.

**3.18.2 Authorized Uses:**

- A. Those uses listed for the I—Industrial district in Section 4.1.2 (Use Charts) as “P” or “C” are authorized uses permitted by right or conditionally permitted uses, respectively. Conditional uses must be approved utilizing procedures set forth in Section 3.20.

**3.18.3 District Development Standards:****A. Lot Dimension Requirements —**

|                   |       |
|-------------------|-------|
| Minimum Lot Area  | —None |
| Minimum Lot Width | —None |
| Minimum Lot Depth | —None |

**B. Yard Requirements —**

|                              |                                                                           |
|------------------------------|---------------------------------------------------------------------------|
| Minimum Front Yard           | —25 feet                                                                  |
| Minimum Side Yard (interior) | —None                                                                     |
|                              | (Ord. No. 09-377, § 2, 01-13-09)                                          |
| Minimum Side Yard (corner)   | —25 feet                                                                  |
|                              | (Ord. No. 09-377, § 2, 01-13-09)                                          |
| Minimum Rear Yard            | —None, except 40 feet when adjacent to single family residential district |

**C. Structure Standards —**

|                          |                                                  |
|--------------------------|--------------------------------------------------|
| Maximum Lot Coverage     | —None                                            |
| Maximum Height           | —None                                            |
| Minimum Exterior Masonry | —None; for additional standards, see Section 5.7 |

**D. Minimum Off-Street Parking** —See Section 5.1**E. Minimum Landscaping Requirements** —5% of the gross site area; also 25-foot



## Commercial Account #160046100A0050000

[Location](#) [Owner](#) [Legal Desc](#) [Value](#) [Improvements](#) [Land](#) [Exemptions](#) [Estimated Taxes](#) [Building Footprint](#) [History](#)

### Location (Current 2018)

**Address:** 601 JEALOUSE WAY  
**Market Area:** 0  
**Mapesco:** 81A-R (DALLAS)

### DCAD Property Map

[View Photo](#)

### 2017 Appraisal Notice

#### Electronic Documents (ENS)


[Print Homestead Exemption Form](#)

### Owner (Current 2018)

RAGAN LLC  
2ND FLOOR  
1907 MARILLA ST  
DALLAS, TEXAS 752016217

### Legal Desc (Current 2018)

1: B & J IND DISTRICT 2ND INST REP  
2: BLK A LOT 5 1.2729 AC  
3:  
4: INT200600325990 DD08302006 CO-DC  
5: 0046100A00500 2CH0046100A  
**Deed Transfer Date:** 9/1/2006

### Value

| 2017 Certified Values             |             |
|-----------------------------------|-------------|
| <b>Improvement:</b>               | \$814,240   |
| <b>Land:</b>                      | + \$55,450  |
| <b>Market Value:</b>              | = \$869,690 |
| <b>Revaluation Year:</b>          | 2016        |
| <b>Previous Revaluation Year:</b> | 2014        |

### Multi-Owner (Current 2018)

| Owner Name | Ownership % |
|------------|-------------|
| RAGAN LLC  | 100%        |

### Improvements (Current 2018)

| # | Desc: OFFICE/SHOWROOM                                                                                                                                                          | Total Area: 21,600 sqft                                                                         | Year Built: 1986 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------|
| # | Construction                                                                                                                                                                   | Depreciation                                                                                    | Appraisal Method |
|   | <b>Construction:</b> S-PRE-ENGINEERED<br>STEEL BLDGS<br><b>Foundation (Area):</b> CONCRETE SLAB<br>(21,600 sqft )                                                              | <b>Physical:</b> 52%<br><b>Functional:</b> + 0%<br><b>External:</b> + 0%<br><b>Total:</b> = 52% | INCOME           |
| 1 | <b>Net Lease Area :</b> 21,600 sqft<br><b># Stories:</b> 1<br><b># Units:</b> 0<br><b>Basement (Area):</b> NONE<br><b>Heat:</b> CENTRAL PARTIAL<br><b>A/C:</b> CENTRAL PARTIAL | <b>Quality:</b> GOOD<br><b>Condition:</b> GOOD                                                  |                  |

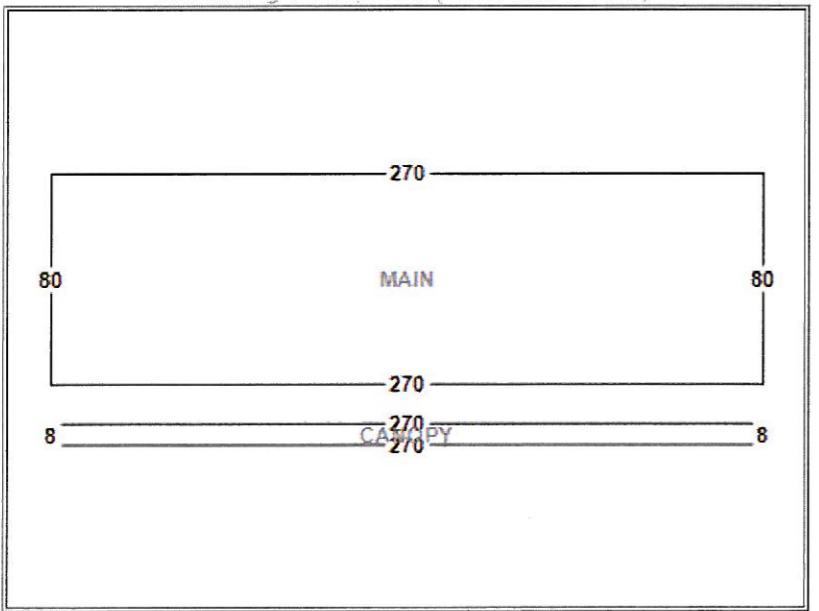
## Land (2017 Certified Values)

| # | State Code              | Zoning     | Frontage (ft) | Depth (ft) | Area                    | Pricing Method | Unit Price | Market Adjustment | Adjusted Price | Ag Land |
|---|-------------------------|------------|---------------|------------|-------------------------|----------------|------------|-------------------|----------------|---------|
| 1 | COMMERCIAL IMPROVEMENTS | INDUSTRIAL | 0             | 0          | 55,447.0000 SQUARE FEET | STANDARD       | \$1.00     | 0%                | \$55,447       | N       |

\* All Exemption information reflects 2017 Certified Values. \*

## Exemptions (2017 Certified Values)

No Exemptions


## Estimated Taxes (2017 Certified Values)

|                        | City       | School         | County and School Equalization | College                     | Hospital          | Special District   |
|------------------------|------------|----------------|--------------------------------|-----------------------------|-------------------|--------------------|
| Taxing Jurisdiction    | CEDAR HILL | CEDAR HILL ISD | DALLAS COUNTY                  | DALLAS CO COMMUNITY COLLEGE | PARKLAND HOSPITAL | UNASSIGNED         |
| Tax Rate per \$100     | \$0.69876  | \$1.516        | \$0.2531                       | \$0.124238                  | \$0.2794          | N/A                |
| Taxable Value          | \$869,690  | \$869,690      | \$869,690                      | \$869,690                   | \$869,690         | \$0                |
| Estimated Taxes        | \$6,077.05 | \$13,184.50    | \$2,201.19                     | \$1,080.49                  | \$2,429.91        | N/A                |
| Tax Ceiling            |            |                |                                |                             | N/A               | N/A                |
| Total Estimated Taxes: |            |                |                                |                             |                   | <b>\$24,973.13</b> |

**DO NOT PAY TAXES BASED ON THESE ESTIMATED TAXES.** You will receive an **official tax bill** from the appropriate agency when they are prepared. Please note that if there is an Over65 or Disabled Person **Tax Ceiling** displayed above, **it is NOT reflected** in the Total Estimated Taxes calculation provided. Taxes are collected by the agency sending you the **official** tax bill. To see a listing of agencies that collect taxes for your property. [Click Here](#)

The estimated taxes are provided as a courtesy and should not be relied upon in making financial or other decisions. The Dallas Central Appraisal District (DCAD) does not control the tax rate nor the amount of the taxes, as that is the responsibility of each Taxing Jurisdiction. Questions about your taxes should be directed to the appropriate taxing jurisdiction. We cannot assist you in these matters. These tax estimates are calculated by using the most current certified taxable value multiplied by the most current tax rate. **It does not take into account other special or unique tax scenarios, like a tax ceiling, etc..** If you wish to calculate taxes yourself, you may use the TaxEstimator to assist you.

## Building Footprint (Current 2018)



History

**History**

---

© 2017 Dallas Central Appraisal District.  
All Rights Reserved.

